iConn: A Communication Infrastructure for Heterogeneous
Computing Architectures

ZHONGQI LI, Qualcomm Inc.
NILANJAN GOSWAMI and TAQO LI, University of Florida

Recently, the graphics processing unit (GPU) has made significant progress as a general-purpose parallel
processor. The CPU and GPU cooperate together to solve data-parallel and control-intensive real-world
applications in an optimized fashion. For example, emerging heterogeneous computing architectures such
as Intel Sandy Bridge and AMD Fusion integrate the functionality of the CPU and GPU in a single die.
However, the single-die CPU-GPU heterogeneous computing architecture faces the challenge of tight budget
of die area. The conventional homogenous interconnect fails to provide satisfactory performance by fully
exploiting the given area budget in the heterogeneous processing era.

In this article, we aim to implement an interconnect network within an area budget for a CPU-GPU
heterogeneous computing architecture. We propose iConn, a 2D mesh-style on-chip heterogeneous commu-
nication infrastructure. In iConn, a set of GPU logical units such as the stream processors, the texture units,
and the rendering output units form a computing unit (CU). Differing from conventional homogenous router
design, iConn adopts nonuniform on-chip routers in order to meet the unique communication demands from
each single CPU and CU. The routers can also dynamically allocate their buffers across all virtual channels
(VCs) to meet the latency requirements of CPUs and CUs. Moreover, the memory controller scheduling algo-
rithm is modified from traditional load-over-store scheduling in order to prioritize the traffic. Our simulation
results show that iConn improves the performance of CPUs by 23.0% and CUs by 9.4%.

Categories and Subject Descriptors: B.4.3 [Input/Output and Data-Communications]: Interconnections;

C.5.3 [Computer System Implementation]: Microprocessors; C.1.3 [Processor Architectures]: Hetero-
geneous (hybrid) Systems; C.0 [General]: Modeling of Computer Architecture

General Terms: Design, Algorithms, Performance
Additional Key Words and Phrases: CPU, GPU, network-on-chip, heterogeneous computing

ACM Reference Format:

Zhongqi Li, Nilanjan Goswami, and Tao Li. 2015. iConn: A communication infrastructure for heterogeneous
computing architectures. ACM J. Emerg. Technol. Comput. Syst. 11, 4, Article 42 (April 2015), 23 pages.
DOILI: http://dx.doi.org/10.1145/2700238

1. INTRODUCTION

Contemporary semiconductor technology [Semiconductor Industry Association 2005]
is capable of integrating the central processing units (CPUs) and graphic processing
units (GPUs) in a single die as a fused computing architecture. For example, Nvidia’s
Project Denver [Dally 2011] integrates a 64-bit ARM processor and GPUs in a single
processor; Intel’s Sandy Bridge [Kanter 2010] has the CPU and GPU on one chip with
a shared on-chip L3 cache; and AMD’s accelerated processing unit (APU) [Winkle 2012;
Brookwood 2010] employs off-chip memory [Boudier 2011] to be shared by the CPU and

This work is supported by the National Science Foundation under grants CNS-1423090, CCF-1320100,
CCF-0916384, and CCF-0845721 (CAREER).

Authors’ addresses: Z. Li (corresponding author), Qualcomm Mobile Computing (QMC), Qualcomm Tech-
nologies, Inc., 5775 Morehouse Drive, San Diego, CA 92121; email: zhongqili@ufl.edu; N. Goswami and T. Li,
Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

© 2015 ACM 1550-4832/2015/04-ART42 $15.00

DOI: http://dx.doi.org/10.1145/2700238

ACM Journal on Emerging Technologies in Computing Systems, Vol. 11, No. 4, Article 42, Pub. date: April 2015.

42:2 Z. lietal

GPU. Such heterogeneous computing architectures provide the opportunity to leverage
both the high computational power from the GPU for regular applications and flexible
execution from CPUs for irregular workloads.

In Nvidia’s CUDA [Nvidia Corp. 2008], the vertex shaders and pixel shaders are
integrated into a unified computing unit called the streaming processor (SP). AMD and
OpenCL [Khronos OpenCL Working Group 2011] use the term computing unit (CU)
for a set of GPU logic units, such as the stream processors, the texture units, and
the rendering output units in the graphics pipeline. For example, AMD Radeon 7970
[Ryan 2011] has 32 such units, each containing 64 stream processors, 4 texture units, 1
rasterizer operation unit, and 1 rendering output unit. In this study, the CUs are used
as the basic processing elements in iConn heterogeneous computing architectures.

These heterogeneous processors pose new challenges to architecture designers. For
example, increasing communication demands among CPUs and CUs push more critical
performance of the on-chip interconnect network. In order to address this issue, the
Intel Sandy Bridge uses a bi-directional ring-style bus, while Nvidia’s Project Denver
and AMD’s Fusion processor adopt a crossbar-style interconnect. These solutions may
be suitable for the processor with a small number of cores but, for future heterogeneous
computing architectures, are all way too simple.

An on-chip mesh-style network provides a promising alternative to the buses and
crossbars in terms of performance and power, however, it faces many new challenges
in the heterogeneous computing environment. For instance, the chip area budget is
usually tight in a heterogeneous computing architecture [Winkle 2012]. Thus the on-
chip network needs to be carefully designed to utilize its area effectively.

The routers in the network [Dally and Towles 2004], which are responsible for receiv-
ing packets on its inputs and forwarding packets to the appropriate output, dominate
the area of the interconnect network. The buffers in the routers usually occupy more
than 75% of the total area of the interconnect [Mishra et al. 2011a]. Most current mesh-
style interconnects use uniform routers with the same size of buffer at every router port.
However, uniform routers are not the best choice in the heterogeneous computing era,
since the CPU and CU possess diametric network demands. CPU cores rely on large
caches and a speculative mechanism to achieve high serial execution performance.
They usually suffer a large penalty until the memory access is satisfied. By contrast,
CUs mainly leverage the single-cycle context switch to remove the latencies incurred by
the memory access instructions. Therefore, the traditional homogenous router should
be redesigned to match the various communication demands from CPUs and CUs. For
example, input buffers connected to those computing cores with less communication
demand could be smaller to save some area for communication-intensive cores.

In this article, we propose iConn, a heterogeneous mesh-style communication infras-
tructure for the heterogeneous computing architecture. The aim of iConn is to alter the
conventional uniform routers to better satisfy the various communication demands
from different types of cores and varied traffic across the application lifespan. IConn
also ensures careful allocation of the resources inside routers and the off-chip memory
controllers so that latency-sensitive CPU traffic will not be impeded by massive CU
traffic.

In summary, we will attempt to answer the following questions in this article.

(1) How do we design an on-chip network within a limited area to maximize the per-
formance of both CPUs and CUs? To be more specific, how do we allocate buffers to
each of the router ports and assign priority levels to each virtual channel (VC)?

(2) Since, inherently, CPUs and CUs exhibit different degrees of sensitivity to network
latency, how does the aforementioned design affect their performance?

(3) Apart from the interconnect, should the CPU and CU traffic be assigned different
priorities in the memory controllers?

ACM Journal on Emerging Technologies in Computing Systems, Vol. 11, No. 4, Article 42, Pub. date: April 2015.

iConn: A Communication Infrastructure for Heterogeneous Computing Architectures 42:3

The article is organized as follows: Section 2 provides a brief introduction to
the heterogeneous computing architecture. Section 3 presents the detailed analysis
and implementation of iConn. Section 4 describes the simulation environment and
Section 5 presents the simulation results. Section 6 describes related work and
Section 7 concludes.

2. CPU-GPU HETEROGENEOUS COMPUTING ARCHITECTURE

GPUs are receiving increasing attention for high-performance parallel computing
[Buck et al. 2004] besides conventional desktop and workstation applications. The
GPUs’ increased popularity has been due in part to a unique amalgamation of perfor-
mance, power, and energy efficiency [Goswami et al. 2012, 2014].

Traditional CPUs and GPUs communicate through PCI Express (PCle), which in-
curs additional overhead costs for CPU-to-GPU data transfers and vice versa. As a
consequence, applications which require CPU and GPU co-computing are oftentimes
bottlenecked by PCle data transfers [Vuduc et al. 2010; Bordawekar et al. 2010]. The
emergence of heterogeneous computing architectures that aim to “fuse” the CPU and
GPU onto the same die, such as AMD Fusion [Dally 2011; Brookwood 2010], Nvidia
Project Denver [Dally 2011], and Intel Sandy Bridge [Kanter 2010], brings the issue
that the PCle bottlenecks be addressed. In these architectures, the x86 or ARM CPU
cores and the general-prupose GPU cores share a common path, for example, ring bus
or on-chip network, to system memory. Also high-speed block transfer engines assist
in data movement between the CPU and GPU cores. Hence, data transfers never hit
the external bus, thereby mitigating the adverse effects of slow PCle.

Figure 1 presents a bird’s-eye view and sectional view of a small-scale CPU-CU
heterogeneous computing architecture. Each CPU core has its own private L1-I and
L1-D caches and an L2 cache shared by all CPU cores. The GPU computing logic units
are organized into the CUs consisting of a set of GPU logical units. The organization
of memory space in the CPU-GPU heterogeneous computing architecture follows the
AMD Fusion architecture [Winkle 2012]. The address space of the main memory is
divided into two parts: one part is visible to and managed by the operating system
running on the CPUs (host memory) and the other part is managed by the kernel run-
ning on the CUs (GPU device memory). IConn follows the current Fusion architecture
design where data needs to be moved between the memory managed by the operating
system and the portion that is visible to the CUs. The future Fusion architecture has
merged memories for the CPUs and CUs in order to avoid the data transfer penalty be-
tween the host memory and GPU device memory (zero-copy transfer technique [Gelado
et al. 2010; Boudier 2011]).

In iConn, each of the processor cores and memory controllers is connected to the
interconnect network through the network interface (NI). The data are packetized in
the NIs and then transferred hop by hop via the network links based on the decision
made by each router. A packet typically encloses a cache line, an invalidation packet,
or part of DMA block data. The size of a cache-line packet in iConn is 72 bytes, which
contains 64-byte data and 8-byte header. The size of an invalidation packet is 16 byte
and the DMA block contains up to 16KB data. In iConn, we assume the NIs break each
DMA block into fixed 72-byte length packets.

Two types of traffic exist in iConn. One is between the CPUs and the cache or
memory controllers (CPU traffic). The other is between the CUs and the cache or
memory controllers (CU traffic).

3. DESIGN OF THE ICONN ARCHITECTURE

The design aim of iConn is to maximize performance of the heterogeneous processor by
using a fixed on-chip interconnect area. In order to achieve this goal, iConn embraces

ACM Journal on Emerging Technologies in Computing Systems, Vol. 11, No. 4, Article 42, Pub. date: April 2015.

42:4 Z. lietal

Arbitrator
Wr|Rd|Cmd
QE|QE| QE
Sequencer

Arbitrator
Wr|Rd|Cmd
QE|QE| QE
Sequencer

Router Y

Interconnect Nétwork

(a) (b)

Fig. 1. (a)Bird’s-eye view of a typical small-scale CPU-CU computing architecture; (b) sectional view of CPU-
CU computing architecture (SP: Shader Processor; LM: Local Memory; GPR: General-Purpose Registers; QE:
Queue).

Ry
* <
2% M| | AN)
AN Crossbar o & 4 2 R‘
@ 7 | .._..Input Buffers
N] (with VCs) w w
i 2 M
S — dim >
VC Control Table RW[ém RE
Routing Table Y E
e e | Status Tables Aﬁ AR
| ——— w
VC Allocator
U || Control Logics
1
R WV RS
Rs
Fig. 2. Block diagram of an asymmetric on-chip router. Fig. 3. The router R and rates to/from connected

routers.

the design of nonuniform routers which can leverage the buffer resources more effi-
ciently. The appropriate router buffer heavily relies on the amount of through traffic. A
router port which connects to the processing core observing heavy traffic load should be
assigned a large buffer. This is because larger buffers are able to temporarily store the
packets on the path and therefore alleviate the backpressure to the processing core. In
this article, we adopt a queuing-theory-based algorithm, aiming to effectively allocate
the buffers to different router ports of iConn properly.

This section presents the details of the algorithm. We first introduce the model of
routers in NoCs, and then present our buffer allocation algorithm. Afterwards, we
introduce the dynamic VC allocation and memory controller scheduling algorithm.

3.1. The Model of a Router

IConn adopts asymmetric routers as depicted in Figure 2. Each input port of the asym-
metric routers has its own buffer with unique size. There are no buffers at the output
ports; they only employ certain flip-flops to decouple the internal part of the routers
with the outside links, which is not the focus of this article.

Each head flit of a packet must proceed through the steps of bufferwrite (BW), routing
computation (RC), virtual-channel allocation (VA), switch allocation (SA), and switch

ACM Journal on Emerging Technologies in Computing Systems, Vol. 11, No. 4, Article 42, Pub. date: April 2015.

iConn: A Communication Infrastructure for Heterogeneous Computing Architectures 42:5

traversal (ST). A head flit, upon arriving at an input port, is first decoded and buffered
in the input buffers according to its input VC in the BW pipeline stage. In the next
stage, the routing logic performs RC to determine the output port for the packet. The
header then arbitrates for a VC corresponding to its output port in the VA stage.
Upon successful allocation of a VC, the header flit proceeds to the SA stage where
it arbitrates for the switch input and output ports. On winning the output port, the
flit then proceeds to the ST stage where it traverses the crossbar and is stored in the
output ports. Finally, the flit is passed to the next node through external links in the link
traversal (LT) stage. Body and tail flits follow a similar pipeline except that they simply
inherit the VC allocated by the head flit. Thus, the time between the header flit of a
packet being received by the router and the downstream node starting to receive the
packet, without considering contention, can be computed as

T = Tgw + Trc + Tva + Tsa + Tst + Trr. @)

In this article we assume each of the preceding steps to take one clock cycle.

3.2. Buffer Allocation Algorithm

The size of the buffers is of critical importance in the iConn architecture. Sections 3.2
and 3.3 serve the purpose of deriving a heuristic algorithm to solve the size of the
buffers based on through traffic.

The area budget of the CPU-GPU heterogeneous computing architecture is usually
tight. The interconnect infrastructure takes around 10% to 20% of the whole chip area
[Michelogiannakis et al. 2007] and the buffers within the routers occupy over 75% of
the total area of the interconnect [Mishra et al. 2011a]. In this study, we assume iConn
is manufactured under the future 14nm SOI process. Thus, given the communication
amount (obtained from the simulations in Section 4.3) of the processing cores and
the total die area, we aim to find the optimized buffer size for all on-chip routers to
maximize system performance. The computed buffer arrangement helps in reducing
the average end-to-end packet latency in the network and speeds up the execution of
applications.

In this article, we perform mathematical analysis on the on-chip routers and traffic
to obtain an optimized buffer arrangement. The routers in iConn are modeled using
the theory of finite queuing networks [Gross et al. 2008]. For the sake of simplicity,
we assume the packets arrive at the routers following the Poisson process. We also
assume each router contains only one server and that its job service time (delay in
routers without external contention) follows an exponential distribution. Each router
then can be modeled as an M/M/1/K finite queue (M: exponential distribution; 1: one
server; K: limited buffer size in each router). Although some previous studies [Hu and
Marculescu 2004; Coenen et al. 2006; Kodi et al. 2008] applied the queuing model
for system performance analysis, most of them focus on homogenous general-purpose
computing cores or application-specific chip multi-processors (CMPs). Our work extends
these studies to the heterogeneous computing architecture.

We summarize the notations of symbols in our analysis in Table I and depict the
arrival rates in Figure 3. The router R is connected to four routers at four directions
which are named Rg, Ry, Rw, and Rg, respectively. Together the four routers are called
R + 1. The arrival rates of R from its upstream router are k%“, in which dir is the
relative position of its upstream router and can be W, E, S, N, or Local. Similarly, the
arrival rate of the downstream routers of router R is)LdR‘il.

Another parameter determining the performance of the interconnect network is the
service rates of routers. The service rate of the router R is denoted as ,udR“”. The ser-
vice rate of the routers is not only determined by the router design, but also by the

ACM Journal on Emerging Technologies in Computing Systems, Vol. 11, No. 4, Article 42, Pub. date: April 2015.

42:6 Z. lietal

Table I. Symbol Notation

Tre Time delay at RC stage
Tya Time delay at VA stage
Tsa Time delay at SA stage
Tsr Time delay at ST stage
Tlink Time delay at inter-router link
Dir One of the directions: E, W, S, N, or Local
R Router R
Rgir Downstream router of the dir port of router R
)\‘gr Arrival rate at direction dir of router R
u’ligi’ Service rate for direction dir of router R
SR.dir Buffer size of direction dir of router R
Pyioerr.airy | The probability that the downstream buffer of direction dir of router R is full
;1‘115’ dZi 1 The virtual service rate in router R for the data from dir1 to dir2
R dgir The virtual service rate in router R for the data to dir
Lg gir The queue length of direction dir at router R
p}d{:i%- 1 The probability that a packet at router R to be delivered from dirI to dir2

probabilities of whether a packet is routed to the downstream node and the status
of the downstream input buffer (whether full or not). As opposed to the arrival rates
obtained from real applications, the service rates can only be computed from mathe-
matical analysis. From Gross et al. [2008], it is known that the full probability of the
downstream buffer (we use the east port of router R as an example) can be computed by
applying the equations for the M/M/1 queuing model (derived from the queuing theory
formula which describes the probability that queuing length is greater than the buffer

size):
) (e
Pplock®.E) = Y VA, Gt : (2
’ 1— (E)S(RE).W V“E

1y

The effective service rate of the link can be estimated as 1/Pyjqckr), and the total ar-

rival rate of direction W of router Rg is A‘éVE. By using Little’s formula, the average wait-

ing time for entering west of router Rg can be calculated as ﬁ, in which the
Polockr.B) ™ *Re

arrival rate of the west port of router Rg, can be expressed as)»ga = Z?&frecﬁom})»dR“pg dir-

So the average waiting time to enter the west port of router Rg is

1
1 dir dir (W °
/Pblock(R,E) - Z{directions})"R PR dir

The forward probability deiﬁrl is predetermined by the routing function. We assume

iConn uses fixed X-Y routing in which the value of dei’rdzirl is either O or 1.

Apart from the average waiting time for the west port of router Rg, we also calculate
the average waiting time of the router R.

To determine the service rate, we assume there are five non-competition channels
at the five ports of router R so that we have five such virtual queues. The arrival rate
of each virtual queue can be calculated as XE = AR.dir X ,OE’ gir» Where dir is the port of

6))

this virtual queue. We assume the service time of this link is /IE’ gir- BY using Little’s

ACM Journal on Emerging Technologies in Computing Systems, Vol. 11, No. 4, Article 42, Pub. date: April 2015.

iConn: A Communication Infrastructure for Heterogeneous Computing Architectures 42:7

formula, the average waiting time on this virtual link can be calculated as ﬁ,
Rdir~ R
which can be further derived as

1

“E i E
AR gir — MR.dir X PR gir

4)

Since the average waiting time for the packets to enter the west port of router Rg
(Eq. (3)) should be equal to the average waiting time on the virtual queue at the east
port of router R (Eq. (4)), the service rate of this virtual queue can be calculated as

-E w E
MRN = 1/Pblock(R,E) -)\'RE +)‘R,dir X pR,dir' (5)

The average service time can be expressed as the sum of all the five downstream
channels.

AirN =PRN X AEN +PRN X ARN + PRN X RN+ PRN X AN +PEN X AN (6)
The service time in a router is a two-part process. The first part of service time is the
fixed waiting time, and the second part is the delay caused by contention. For the same
reason, the length of the waiting queue also needs to be treated as the sum of two
queues which are caused by the fixed waiting time and the contention, respectively.
Applying the queuing theory equation to determine the mean queue length, we have

P N 1 1
LR,N=_=}\' + _ . (7)
1-p R(%_kg MR,N_)‘§>

After applying Little’s formula again, we can obtain the final expression for ,ug, which is

1
p.g = AE + . (8

N(_1_ 1
MR (%—xg ti —xg)

MR N

As a result, prior Egs. (2) through (8) reveal the relationship between the network
traffic (arrival rate) and router behavior (blocking probability). This group of linear
equations can be solved by using Matlab’s nonlinear equation solver.

3.3. Buffer Allocation Schemes

Although the link block probability can be computed based on the traffic rate by lever-
aging the results from the previous section, it is still unclear how this can be applied
to calculate the buffer sizes.

One naive approach is the exhaustive algorithm which attempts to search all possible
combinations of buffer allocations and finds the best solution, however, it leads to
nondeterministic polynomial (NP) complexity.

We propose to leverage a heuristic algorithm as depicted in Figure 4. The results from
our algorithm should be close to the ideal solution. Our algorithm aims to minimize
the variation of the average waiting time of each port as described by Egs. (3) and
(4). In our algorithm, we applied a nonlinear equation solver as well as the simulation
iterations to determine the size of the buffers.

3.4. Virtual Channel Division

In Section 3.3 we proposed an algorithm to compute all the buffer sizes. The VCs
of the ports, which play an important role in modern on-chip networks, should be

ACM Journal on Emerging Technologies in Computing Systems, Vol. 11, No. 4, Article 42, Pub. date: April 2015.

42:8 Z. lietal

ALGORITHM: Buffer Allocation Algorithm

1. Equally allocate the available buffers to every port of all routers.

2. Use the nonlinear equation solver to find the ports with the smallest
Pblock(R,dir) and the blggest Pblock(R,dir)’ then assign the buffer of the size
of a packet from the least Ppjock(rair) POrt to the highest Pyjock(r,air) POrt.
3. Record the current allocations of all buffer sizes and the standard
derivation of all Ppyock(r air) Of all router ports.

4. Run the nonlinear equation solver again.

5. If the new recorded standard derivation of all Ppjock(rair) is smaller
than before, then repeat step 2 - 4; otherwise use the previous allocation
of buffers.

Fig. 4. Buffer allocation algorithm.

utilized effectively as well. In this section we aim to allocate the VCs at each input port
efficiently using the size of buffers computed in Section 3.3.

In iConn’s VC allocation algorithm, one VC is dedicated to CPU traffic and therefore
helps to reserve a certain bandwidth, even in a congested environment with a round-
robin VC arbiter. The motivation is based on the fact that CPU workloads are usually
more sensitive to latency, while the single-cycle context switch and massive threads
can hide the access latency of CU applications to some extent.

The nature of the VC mechanism and fairness of the round-robin arbiter avoid the
waste of bandwidth in case of an idle dedicated VC. In conventional design, each VC
owns a portion of the buffer at that port. Although the bandwidth can be fully utilized
when some VCs are idle, the buffer spaces of these idle VCs are wasted. So we seek
to adaptively assign the buffers across all VCs at the same input port. This can be
achieved by introducing a centralized buffer shared by all VCs. However, the dedicated
VC for CPUs may face starvation since its throughput is usually much smaller than
those of the other VCs.

In iConn, we designed a simple architecture suitable for hardware implementation
to allocate available VC resources to waiting input requests, as shown in Figure 5. The
whole buffer of an input port is equally divided into two halves, namely native buffers
(NBs) and additional buffers (ABs). Each VC has its own private NB and shares the
ABs with other VCs.

Each VC may be granted one NB and multiple ABs, depending on the availability
of ABs. All buffers granted to one VC are linked together to work as a whole. The
last buffer refers to that AB or NB which is most recently assigned to a VC and has
nonzero data count. Each VC applies for one extra AB at the cycle when the last
buffer usage (packet count) exceeds M. One AB will be granted at the next cycle if any
AB is available. The selection of M depends on the actual hardware implementation.
Assuming N is the capacity of each buffer, M must be a value smaller than N; in our
simulation, M is chosen to be N-1 so that an additional AB will be requested one cycle
ahead. An assigned AB will be freed at the cycle when its data count falls to zero and
if it is the last buffer.

The usage of ABs and NBs is recorded in the VC control table, as the red dashed
square in Figure 5(b) indicates. Figure 5 presents an input port with 4 VCs. Each of
the NBs and ABs has a capacity of 5 packets. VC 0 is the VC reserved for CPU traffic,
and the other VCs are shared by CUs and CPUs. In this example, there are 11 packets
in VC 0, and VC 0 was granted two ABs (0 and 1). VC 1 only has 2 packets stored in
NB and therefore has no AB. The last buffer usage in VC 2 is more than 5, so AB 2 is
granted. However, since the data count in AB 2 is zero, the last buffer usage section in
the VC control table shows the usage of NB 2, as opposed to AB 2.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 11, No. 4, Article 42, Pub. date: April 2015.

iConn: A Communication Infrastructure for Heterogeneous Computing Architectures 42:9

Additional Buffers (ABs) Native Buffers (NBs)
i e
= [> vCo >
NB-O

AB 1

East 0 South 0 | 1 0.1 Iy
East 1 North 0 2 - | ¥
East 2 North ! 5 | Y
East 3 = 2 | = = ; N
o | :
e —

(b)

Fig. 5. (a) Dynamic VC structure at an input port; (b) revised VC control table.

3.5. Memory Controller Scheduling Algorithm

Apart from the routers, the memory controllers also deserve careful design to avoid
any speed degradation. A memory access may be solved by cache, or it eventually ac-
cesses the main memory in the case of a last-level cache miss. Although the dedicated
VC improves the latency of CPU traffic, our simulations show that the CPU packets
are usually delayed by the overwhelming CU traffic in the memory controllers, pro-
vided that only the network routers prioritize the traffic. Thus the memory scheduling
algorithm also needs to be modified accordingly.

One widely used memory controller scheduling algorithm, load-over-store scheduling,
assigns higher priority to the load memory access than to the store memory access.
According to Rixner et al. [2000], load-over-store memory access helps to improve the
performance of load-sensitive benchmarks while not hurting the performance of other
benchmarks.

We modified the conventional load-over-store scheduling algorithm by assigning the
CPU traffic higher priority, namely CPU-over-CU scheduling. As listed in Table II,
the traffic is now categorized into four priority levels, improved from the two levels in
the original load-over-store scheduling algorithm. This algorithm only requires minor
modification and introduces negligible overhead. We will present simulation results
showing that the prioritized small amount of CPU traffic will not degrade the perfor-
mance of CUs much.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 11, No. 4, Article 42, Pub. date: April 2015.

42:10 Z. lietal

Table II. Traffic Priorities in Different Scheduling Algorithms

Load-over-Store scheduling algorithm CPU-Over-CU scheduling algorithm
CPU Load 0 0
CPU Store 1 1
CU Load 0 2
CU Store 1 3

4. EXPERIMENTAL ENVIRONMENT

To evaluate the performance of iConn, we first collect the traffic trace by running
two suites of general-purpose benchmarks on a 16-CPU and 32-CU heterogeneous
computing system. Four typical placements of the CPUs, CUs, and on-chip memory
controllers are evaluated in this article. The buffer allocation algorithm then uses
the traffic trace as the input and computes the buffer sizes. After this, we run the
simulation again to compare performance and power consumption under different
buffer allocations, VC divisions, and memory scheduling algorithms.

In this section, we will first introduce our CPU-CU integrated simulation framework
and then describe the adopted benchmark suites and four different core placements.
Finally, we will present the different simulation schemes evaluated in the experiments.

4.1. Simulation Framework

We integrated two simulators, GEM5 [Binkert et al. 2011] and GPGPU-Sim [Bakhoda
et al. 2009], into a single framework to evaluate the iConn communication infrastruc-
ture. GEM5 is a modular platform simulator for processor microarchitecture, mem-
ory, and multi-processor systems. The CPU, memory hierarchy, and interconnect are
modeled in GEM5. On the other side, GPGPU-Sim provides a simulation model of
contemporary GPUs.

The workflow of our integrated framework simulator is shown in Figure 6. GPGPU-
Sim is instantiated as an object within the GEM5 simulator and is slave to GEM5.
The two simulators communicate with each other mainly through the subroutines in
GPGPU-Sim.

As shown in Figure 6, we hacked the tick() subroutine of the GEM5 simulator by
inserting the interface to load the GPGPU-Sim (basically a variation of run_cycle()).
The “tick” is the smallest unit of simulation step. It differs in GEM5 and GPGPU-Sim
because CPUs and CUs operate at separate frequencies. To simulate the CPU and CU
simultaneously, both the cycles of CPU and CU should be the integral multiple of a
tick. We choose 0.1ns, which is 1/3 a cycle of the CPU (CPUs work at 3.3 GHz) and 1/5
a cycle of the CU (CUs work at 2 GHz). The tick () function of the GEM5 simulator
finishes all CPU operations and then loads GPGPU-Sim. GPGPU-Sim returns to GEM5
after finishing execution, and then GEM5 starts Ruby. The modified Ruby interface
allocates the traffic data from GEM5 and GPGPU-Sim to the memory hierarchy and
the interconnect. Finally, GPGPU-Sim writes back all the registers.

We use the 16 Alpha-21264 CPUs configured with timing simple mode [Binkert et
al. 2011] in GEMS5 to simulate the CPU model and timing of memory references. We
also simulated 32 CUs using GPGPU-Sim v3.0.0b [Bakhoda et al. 2009]. The detailed
configuration of the CPUs, CUs, and interconnect is listed in Table III.

The simulated interconnect network consists of 64 routers in total. Before applying
the buffer reallocation algorithm, each input port has a 32-packet buffer. The total
buffer size of iConn is therefore 737,280 bytes. We calculated the aggregated area of
all buffers from CACTI 6.5 [Muralimanohar and Balasubramonian 2009] and scaled
it down to 14nm technology node. Under a 14nm technology node, the buffer size
is computed to be 3.01mm?. We then apply different buffer relocation algorithms to
rearrange the buffers to each router port and compare their performance.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 11, No. 4, Article 42, Pub. date: April 2015.

iConn: A Communication Infrastructure for Heterogeneous Computing Architectures 42:11

Benchmarks (.cpp)

Y
Sourcery Cross-Compiler Sdur“'_'_:
- Code
ISA Compatible Binaries (.cu)
: !
sre/sim/main.cc Nvcc+ptxas

v

sre/simiinit.cc

)

'

'

'

|

!

'

'

' '

' '

\ '

| '

V '

' [

'

\ '

\ [}

| '

[

| '

v

' '

' '

| |

[[

| '

| '

‘

' '

' [

\ '

| '

' '

' [

' '

' '

' '

[}

| '

' '

| |

' '

' '

' '

| |
'

' [}

'

i '

' '

\ '

\ '

['

' '

['

\ |

'

[

|

'

|

'

'

|

i

'

'

'

\

[}

C++ Compiler

l

Executable Ptx files

GEMS5
GPGPU-Sim

Build/ARM_FS/sim/

simulate.cc l

i GEMS: Tick() load Sha@erCores:

{CPU operations;} v Earlier Stage

: i ShaderCores:

2 —
Ruby: Interconnect : , Mermory. Stage
l - ! ShaderCores:
. ' teback !

Ruby. DRAM -—?M.’ Writeback Stage

Fig. 6. Simulation flow with GEM5 and GPGPU-Sim.

4.2. Test Benchmarks

In our simulation, we applied CPU- and CU-specific benchmarks to simulate real-world
CPU and CU activities. For the CUs, we adopt the CPU-CU benchmarks as listed in
Table IV. All benchmarks are chosen from the Nvidia CUDA [Nvidia Corp. 2008] or
AMD SDK [AMD Inc. 2014]. Although only general-purpose computing benchmarks
are evaluated, the conclusions in this article are also applicable to specific applications
such as triangular functions, graphic, and video/audio compression applications.

We run mixed SPEC 2006 [Henning 2006] and PARSEC [Bagrodia et al. 1998] bench-
marks on CPUs as listed in Table V. The SPEC 2006 benchmark suite was originally
designated to stress a single processor and the memory. In order to test multicore
performance, we run SPEC 2006 under “rate” mode, which executes multiple copies of
the same benchmark simultaneously. Meanwhile, the multicore benchmark PARSEC
stresses both the memory hierarchy and interconnect network between the cores.

In our simulations, each set of the CPU and CU benchmarks is composed of four
parts, marked as #®00 for CUs and ®@®® for CPUs in Table VI. Each part is exe-
cuted on 4 CPUs and 8 CUs. The operating system performs the mapping for CPU,
and the CU runtime system maps CU kernels to different CUs. GPGPU-Sim imple-
ments a fake CUDA runtime library and AMD SDK that diverts all driver-level API

ACM Journal on Emerging Technologies in Computing Systems, Vol. 11, No. 4, Article 42, Pub. date: April 2015.

42:12

Z. Lietal.

Table Ill. Configuration of Processors and Interconnect

Configuration of the Alpha CPU

L1 Cache Size

32 KB Instruction + 32 KB Data, 8 way, 64 Byte/line, 2 ports, 1ns latency

L2 Cache Size

1536 KB Instruction + 1536 KB Instruction (Shared by 24 cores), 8 way,
64 Byte/line, 2 ports, 20 ns latency

Execution Unit

In-Order (Timing simple model)

Main Memory

16GB, x8 chip, 1000MHz DDRS3 channel, tRCD = 10,
tRRD =4, tRC = 34, tCCD =4

Cache coherence

MESI_CMP _directory

GPGPU Cores Network Configuration
Number of CUs 32 Total Buffer Area 3.012 mm?
Warp Size 32 Flit Size 128 bits
SIMD Pipeline Wide 8 Entries per Buffer 32
Number of Threads 512 Routing X-Y fixed
Number of CTAs / Core 4 Packet Size 72 bytes
Number of Registers 16384

Texture Cache Size 8KB (2-way set assoc.
64B lines LRU)
Core 64KB (2-way set

assoc. 64B lines LRU)

Texture Cache Size

Table IV. Testbenches on CUs

Graph size of 64K

Vector of length 215 with 27 kernels

Number of coefficients is 100 x 100

Grid area of 50 x 6 in 60 iterations

Grid size of 100 x 100 x 100

Multiplication of 144 x 352 and 352 x 400 matrix
Matrix size 32 x 512

Breadth First Search (BFS)
Fast Wash Transform (FWT)
Gaussian Elimination (GS)
Hot Spot (HS)

3D Laplace Solver (LPS)
Matrix Multiplication (MM)
Matrix Transpose (MT)

Path Finder (PF) 32 x 32 grid with weight 10
Ray Trace (RAY) Image size 256 x 256

Speckle Reducing Anisotropic Diffusion (SRAD) | 128 x 128 in 25 iterations
Hybrid Sort (HY) Dataset size of 2°

Similarity Score (SS) 256 points with 128 features
Nearest Neighbor (NE) 3 nearest neighbor calculations

Parallel Prefix Sum (SLA)
AES encryption (AES)

64 Bin Histogram (64H)
Galerkin Solver (DG)

Number of elements 32

256KB picture encryption using 128-bit encryption
134217728 bytes in 5 time step

3D version with 6™ order polynomial

calls to simulated library implementation of the API. It also implements thread block
scheduling across several shader cores [Nvidia Corp. 2008]. We run the applications
for 5 billion cycles with 0.5 million warmup cycles and then rotate all the four parts
of CU and CPU tasks 90 degrees clockwise to different processors on the chip. After
repeating the rotation three times, the four dumped traffic traces are averaged and
then used as the input of the buffer allocation algorithm.

4.3. Placement of the Cores and Memory Controllers

The placement of CPUs, CUs, and memory controllers in heterogeneous computing
system significantly affects the performance. Modern processor packaging allows suffi-
cient escape paths between the memory controllers and main memories from anywhere

ACM Journal on Emerging Technologies in Computing Systems, Vol. 11, No. 4, Article 42, Pub. date: April 2015.

iConn: A Communication Infrastructure for Heterogeneous Computing Architectures 42:13

Table V. Testbenches on CPUs

Group Benchmarks Configuration
SPEC 2006 | 401. bzip train test set
403. gee train test set
458. sjeng train test set
470. Ibm train test set
433. milc train test set
459. GemsFDTD | train test set
429. mcf train test set
436. cacbusADM | train test set
PARSEC Blackscholes 65,536 options
Swaption 16 swaptions, 20,000 simulations
Freqmine 990,000 transactions
x264 128 frames, 640 x 360 pixels

Table VI. Combination of CPU and CU Testbenches

CU Tasks CPU Tasks
Test Sets | CU Benchmarks SPEC 2006 PARSEC

1 BFS® | FWT® | 401. bzip® Blackscholes®
GS® HSO® 436. cacbusADM® | swaption®

9 LPS MM 429. mcf freqmine
MT PF 459. GemsFDTD x264

3 Ray SRAD 433. mile Blackscholes
HY SS 470. Ibm freqmine

4 NE SLA 458. sjeng Blackscholes
AES 64H 403. gce freqmine

5 DG SS 401. bzip x264
BFS LPS 403. gee Freqmine

6 Ray NE 458. sjeng Blackscholes
DG FWT 470. Ibm x264

7 MM SRAD 433. milc Freqmine
SLA GS 459. GemsFDTD Swaption

3 MT HY 429. mef Freqmine
AES HS 436. cacbusADM Blackscholes

on the chip. Thus, an efficient placement should target the minimization of link con-
tention and network latency through reasonable arrangement of the processing cores
and memory controllers [Abts et al. 2009]. IConn employs a 2D radix-8 mesh-style on-
chip network which contains 16 memory controllers, 16 CPUs, and 32 CUs. The number
of processing cores is scaled up from AMD’s Kaveri APU [Silcott and Blaszczyk 2013]
which contains up to four 28nm steamroller CPU cores, and 8 CUs consisting of 512
stream processors. In iConn, the 16 memory controllers are connected to the off-chip
memories though on-chip pins.

In this article, we evaluate our algorithm using four representative placement scenar-
ios as shown in Figure 7. Although only four typical placement scenarios are evaluated
in this article, our algorithm is highly scalable and can be easily apphed on any number
of processing cores and arbitrary placement. The mapping scenarios are chosen based
on three observed facts and the conclusions in Mishra et al. [2011b], Abts et al. [2009],
and Bakhoda et al. [2010].

(1) CPUs exhibit better performance if located close to each other due to their latency-
sensitive nature.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 11, No. 4, Article 42, Pub. date: April 2015.

42:14 Z. lietal

Fig. 7. Placements of CPUs, CUs, and memory controllers.

(2) CUs are not as sensitive as CPUs to the locations. CUs can be set apart but still
maintain satisfactory performance. Besides, CU data is more likely to be streamed
through main memories rather than caches, that is, the memory controllers on chip.

(8) iConn exhibits better performance by placing the memory controllers at the central
part of the chip rather than at the corners.

We assume the directory controllers [Sorin et al. 2011] are attached to CPUs and
CUs. We also assume the directory controllers and potential snooping controllers/filters
are small and occupy negligible area in our experiments.

4.4. Simulation Schemes

In the simulation part, we compare the results from our buffer allocation algorithm
with those of several other buffer allocations. Since only limited studies are available
for this topic, we compared our design with a naive approach (LIN) and two approaches
proposed in Mishra et al. [2011b] (DUAL and DUAL-L) as listed in Table VII. In our
simulation, the total size of the buffers of all router ports is kept the same (more details
will be provided in Section 5.1), and we investigate different arrangements of the
buffers aiming to maximize performance. The baseline approach uniformly distributes
the buffers among all router ports (UNI). In another naive approach, the buffer size of
each router port is linearly proportional to its through traffic amount (LIN). In Mishra
et al. [2011], the authors utilize two types of routers: big routers and small routers
based on the simulation results. Though Mishra et al. [2011Db] is a research merely
facing a homogenous CMP environment, we applied its philosophy for comparison.
Assuming the number of VCs is x, we chose 16 out of 64 routers with higher traffic
throughput and set their VC number as 1.5x. The remaining 48 routers have 0.5x VCs
(DUAL). Then, we use the same strategy as Mishra et al. [2011b] by adjusting the
width of half of the links with higher traffic from original 128 bit to 160 bit, and the
other half of the links to 90 bit (DUAL-L). Doing so has no impact on the bi-sectional
bandwidth. In DUAL and DUAL-L, all VCs have the same size of buffers so those
channels with more VCs gain more buffers. We then applied our buffer algorithm in
BA to compare with the aforementioned schemes. In BA, the VCs at different router
ports have different sizes of buffers.

In addition to the buffer allocation schemes, we also evaluate the following VC
allocation schemes:

(1) no dedicated channel for CPU and CU (Equal);

(2) always reserve one dedicated VC for CPUs (CPU);

(3) reserve one dedicated VC for CPUs and dynamically allocate the buffers across VCs
of a same port (CPU/dyn).

ACM Journal on Emerging Technologies in Computing Systems, Vol. 11, No. 4, Article 42, Pub. date: April 2015.

iConn: A Communication Infrastructure for Heterogeneous Computing Architectures 42:15

Table VII. Different Approaches Simulation

Buffer Allocation Algorithms

UNI Uniform Buffer Size (Baseline)

LIN Buffer size linearly proportional to traffic

DUAL Two types of buffer determined by traffic

DUAL-L Two types of buffer determined by traffic, with link width
proportional to buffer size [Mishra et al. 2011]

BA Our buffer allocation algorithm

VC Allocation Schemes (Default: Equal, n = 4)

(Equal, n) CPUs and CUs share all the n VCs; the traffic
are treated equally.

(CPU, n) n VCs, one out of n VCs is reserved for CPU traffic.

(CPU/dyn, n) | n'VCs, one out of n VCs is reserved for CPU traffic;
dynamically assign buffers across VCs

CPU-over-CU Memory Access Scheduling

(Default: load-over-store)

-MEM CPU traffic has higher priority than CU traffic
based on traditional load-over-store scheduling

Finally, our CPU-over-CU memory scheduling algorithm (-MEM) is examined to
compare against a baseline algorithm (load-over-store) as well.

5. SIMULATION RESULTS

In this section, we first present the results from our buffer allocation algorithm in
Section 5.1. Then we evaluate the instructions-per-cycle (IPC) speedup against other
buffer allocation algorithms in Section 5.2. Section 5.3 evaluates system performance
by varying the number of VCs and the VC allocation algorithms. Section 5.4 presents
the breakdown of memory access latency and the benefits of our memory scheduling
algorithms. Section 5.5 exhibits the breakdown of the power consumption.

5.1. Distribution of NoC Buffer Size

In this section, we present the computation results from the buffer allocation algorithm
proposed in this article. The buffer allocation algorithm is applied on the four difference
placement scenarios described in Section 4.3. Each figure demonstrates the contour plot
of the size of the buffers normalized to those routers with the smallest buffer. For the
sake of simplicity, we only present the average buffer size of each router. Note that
these figures do not represent the actual layout of the nonuniform routers. They only
indicate the quantitative results of the buffer allocation algorithm.

As we can observe from Figure 8, those routers connecting to the CUs generally
require larger buffers than their counterparts connecting to the CPUs. In each of the
four schemes, the largest buffers are 3.6 x, 3.2x, 3.1x, and 3.7 x larger than the smallest
buffers, respectively. However, although the CPUs in the center area usually generate
less traffic, the routers in that region still need a certain amount of buffers. This is
because the packets tend to be routed through the center area of the chip rather than
the edges or the corners in X-Y routing [Dally and Towles 2004]. From the perspective
of the chip layout, scenario (c) is the easiest since the buffer distribution is the “flattest”
among the four.

5.2. IPC Speedup under Different Buffer Allocation Algorithms

In this section we compare the performance of the system under different buffer reallo-
cation algorithms in Table VII, by executing the eight test sets listed in Table VI. The

ACM Journal on Emerging Technologies in Computing Systems, Vol. 11, No. 4, Article 42, Pub. date: April 2015.

42:16 Z. lietal

1

(a) scenario 1 (b) scenario 2 (c) scenario 3 (d) scenario 4

Fig. 8. Contour plot of normalized buffer sizes in NoC under different placement scenarios.

simulation results are shown in Figure 9, where the IPCs of CPUs and CUs are used
as the speedup metric.

We observe from Figure 9 that the nonuniform buffers in routers can improve the
performance of the system, although the CPUs and CUs benefit differently. The naive
linear algorithm (LIN) increases the IPC of CPUs and CUs by an average of 12.9% and
8.4% for the four scenarios, respectively. We then compared the two design philosophies
(DUAL and DUAL-L) derived from Mishra et al. [2011b]. The VC number in this
simulation is 4, so the wide channels in DUAL and DUAL-L have 6 VCs, and the
narrow channels are assigned 2 VCs. The DUAL improves the IPC of CPUs and CUs
by 12.7% and 7.4%, respectively. When applying the different link width with DUAL, we
can see that DUAL-L improves the IPC by another 0.3% for CPUs but effects nearly no
change for CUs. This limited improvement indicates that, in a CPU-GPU heterogeneous
computing architecture, the relatively higher traffic compared with conventional CMPs
[Mishra et al. 2011b] makes the impact of the link width very limited. Instead, the size
of the buffers has a greater effect on the system performance.

We evaluated our buffer relocation algorithm (BA) against the baseline, DUAL, and
DUAL-L schemes. The simulation results show that our algorithm achieves 15.9%,
3.0%, and 2.4% improvement for CPUs compared with the baseline, DUAL, and DUAL-
L; and gives 8.4%, 3.1%, and 3.2% improvement for CUs compared with the baseline,
DUAL, and DUAL-L.

Memory-intensive benchmarks benefit more from the buffer reallocation than
memory-nonsensitive applications. Among all the tests, test 4 exhibits the most signif-
icant performance improvement. This is because both the CPU and CU benchmarks in
test 4 are sensitive to memory activities and therefore it yields heavy network traffic
(both cache coherence traffic and memory access traffic). So our buffer allocation al-
gorithm improves the performance more than other tests. We can also see that CUs
benefit less than CPUs from the buffer allocation algorithms since the internal wave-
fronts scheduling algorithm of shader processors is able to hide a significant portion of
network latency.

5.3. Performance Improvement with Multiple VCs

In this simulation, we evaluate the performance by applying different VC allocation
schemes and adjusting the number of VCs. The buffer size used in this section is
obtained from the BA algorithm. The names of the VC allocation schemes in Table VII
are abbreviated to the test cases in Figure 10. In these test cases, the first character
“n” is Equal, “¢” is CPU, and “d” is CPU/dyn. The digit represents the number of VC(s);
for instance, “d4” in Figure 10 stands for (CPU/dyn, 4) in Table VII.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 11, No. 4, Article 42, Pub. date: April 2015.

42:17

=LIN =DUAL =»DUAL-L =BA
(d) scenario 4

CPUs

iConn: A Communication Infrastructure for Heterogeneous Computing Architectures

oOOoOUVLOWVOWLO
AANNT— OO0

—~r+~+~+v+v0OOo

dnpaadg pazijewloN

oOOoOUVLOWVOWO
OANN——OORNR

B ke ¥

dnpseadg pazijew.ioN

OWLOWOWOWO
QNN —OoQO®

—rr+rr-+-+-O0O0o

dnpaadg pazijewloN

OLLOWLOWVOWO
OANANT——OOOd®

B =T~

dnpaads pazijewloN

Avg-CU -
_ Avg-CU Avg-CU 7 _ — Avg-CU
Avg-CPU Avg-CPU Avg-CPU Avg-CPU
Test 8 4 *
Test 8 Test 8 - Test 8
Test 7 Test 7 Test 7 — Test7
Test 6 Test 6 = Test 6 Test6
! o i
Test 5 " mm Test 5 mm Test 5 M — Test 5
- = [}
Test4 3 by Test 4 m " Test4 3 H_ I = Test 4
Test3 3 Testd O Testd 2 _ Test 3
Test2 @ S Test2 3 Test2 3
- Test 2 A « es 0 o est2 3
o o i
Test 1 N_ . m Test 1 B .m Test 1 i .m Test 1
3 £ S g s £
T 8 2 3 S 4
Test 8 - = Test 8 " & Test 8 - \H/ Test 8
z &= z z =
Test 7 2 Test 7 - Test7 3 Test 7
- n - F
: Test 6 Test 6 Test 6 Test 6
; Test 5 m Test5 2 " _ Test5 £ Test5
o o P
Test4 © Test4 © ._“ Test4 © Test4
; h Test 3 _ Test 3 7 Test 3 Test 3
1
| _ Test 2 m Test 2 p Test 2 Test 2
| 1
7 _ Test 1 [] Test 1 7 . Test 1 Test 1

Fig. 9. Normalized IPC improvement under different buffer allocation schemes (baseline: UNI).

ACM Journal on Emerging Technologies in Computing Systems, Vol. 11, No. 4, Article 42, Pub. date: April 2015.

42:18 Z. lietal

1.16 1.16
114 98 114 —— @ds gl
1.12 1.12
'§- ‘d4 .§- n4'1’18
o 1.10 X 3 3 o 1.10
a 2 “‘Wg T a *
® 1.08 g - » 1.08 8
o o C4
© 1.06 © 1.06 ? d&
1.04 g‘ ~C2 1.04 al 2
a2 *
1.02 1.02
1.05 11 115 12 125 1.05 11 115 1.2 1.25
CPU Speedup CPU Speedup
(a) scenario 1 (b) scenario 2
1.16 1.14
114 #4818 8¢
1.12 g g 2 5
0 " e o n4®®n8 42
S 1.10 rg * g 1.10 Y
2 1.08 - nl 8 2 nlg, *
Q 4 g 1.08 c8
o 1.06 »
o cd4d2 o)
1.04 1.06
o 3] c4
1.02 ¢ 4
100 1.04
. > PS
0.98 5 1.02 &2
105 14 115 12 1% 1.3 1.05 11 115 12 125
CPU Speedup CPU Speedup
(c) scenario 3 (d) scenario 4

Fig. 10. System performance under different VC numbers and VC allocation schemes.

We first observe from Figure 10 that multiple VCs boost the performance of both
CPUs and CUs. Among the Equal (n1 — n8) schemes, the CPUs more greatly benefit
from the increased VCs (1.2% for 2 VCs, 5.2% for 4 VCs, and 6.2% for 8 VCs) than the
CUs (1.2%, 2.6%, and 3.1%, respectively) by average of the four scenarios. The result
is mainly because the CPUs are more sensitive to network latency and multiple VCs
help avoid massive CU traffic.

Giving a dedicated VC for the CPUs (CPU), the performance of the CPUs is further
improved by 12.7% under 2 VCs, 9.5% under 4 VCs, and 5.9% for 8 VCs compared
with Equal by average of the four scenarios. However, the speedup of CPUs comes at a
price of slight CU slowdown. As we observed, the 2-VC and 4-VC schemes degrade the
performance of CUs by 5.4% and 3.1% compared with Equal, respectively, although the
8-VC network still manages to maintain a 0.8% speedup.

As introduced in Section 3.4, the CPU/dyn scheme is hence used to address the
slowdown issue. It shows an average improvement of 11.1% for 2-VC, 7.7% for 4-VC, and
2.2% for 8-VC channels compared with Equal. In the CPU/dyn scheme, the CUs show
satisfactory performance, where only the 2-VC scheme is degraded by 2.7% by average
of the four scenarios. The 4-VC and 8-VC schemes gain 3.8% and 5.1% improvement,

ACM Journal on Emerging Technologies in Computing Systems, Vol. 11, No. 4, Article 42, Pub. date: April 2015.

iConn: A Communication Infrastructure for Heterogeneous Computing Architectures 42:19

== Link Latency === Router Latency Memory Latency
==CPU Speedup =9=CU Speedup

300 |
250

200 |
150 |
100 |

CPU / CU Speedup

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Memory Access Latency (Cycles)

Fig. 11. Memory access latency and speedup under different memory scheduling algorithms (from left to
right in each scenario: CPU memory access under Equal, CPU memory access under CPU/dyn, CPU memory
access under CPU/dyn-MEM, CU memory access under Equal, CU memory access under CPU/dyn-MEM,
CU memory access under CPU/dyn-MEM).

respectively. Among all schemes, (CPU/dyn, 4) exhibits the best performance as both
the CPUs and CUs achieve satisfactory performance.

5.4. Performance Improvement under Different Memory Scheduling Algorithms

Sections 5.1 through 5.3 examine system performance by taking various approaches
in the interconnect network. In this section, we evaluate our memory scheduling algo-
rithm proposed in Section 3.5 in a 4-VC network with our buffer allocation algorithm
(BA). The memory access latency and overall CPU and CU speedup are examined, as
presented in Figure 11. The IPC is still used as the metric of CPU/CU speedup.

Generally, the memory access packets experience several different types of delay,
among which the link latency is the average time consumed on the NoC links. The
router latency is the time consumed in the network routers, which is mainly due to
the temporary storage of packets and downstream resource contention. The memory
latency includes the latency of the memory controllers and the off-chip memory access
delay.

We observe from Figure 11 that router and memory latency dominate the overall
memory access latency (45% and 38% by average of the four scenarios, respectively).

Our priority-based dynamic VC division algorithm and memory controller scheduling
algorithm address the two respective types of latency. The virtual channel division
proposed in Section 3.4 helps in reducing the router latency. For example, by average
of the four scenarios, CPU/dyn reduces the router latency of CPU packets by 31.3%,
but only insignificantly reduces the memory latency by 14.5% compared with Equal.

The CPU-over-CU memory scheduling algorithm (suffix of ““MEM?”) in Section 3.5 is
proposed to address this issue. Compared with CPU/dyn and CPU, the CPU-over-CU
algorithm reduces 18.5% and 33.4% of the memory access latency by average of the
four scenarios. And accordingly, the CPU performance is improved by 3.9% and 9.3%,
respectively.

The CU performance degrades to a limited extent when applying CPU/dyn and
CPU/dyn-MEM. By average of the four scenarios, the memory access latency of CUs
is increased by 1.5% and 7.9% in CPU/dyn and CPU/dyn-MEM compared with Equal,
respectively. The moderate memory access latency leads to 2.5% and 1.7% IPC degrada-
tion for the CUs. The CPU/dyn-MEM scheme still exhibits 2.2% (not shown in Figure 11)
improvement over the (Equal, 1) scheme where no VC mechanism is used.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 11, No. 4, Article 42, Pub. date: April 2015.

42:20 Z. lietal

= Link Power == Clock Power wsm Buffer Power

mmm Xbar and Arbiter Power ==CPU Speedup «=0=CU Speedup
5 :llg 1.4 o
TR = S = S ey

Q -] .
zEo gl gl gl ol @
s 2 0s ‘B=0-B Al—l—lf-l—l—l—l—.:_l.i.lﬁlul—l—-- 0.6 O
IR EE R = - === = === E | = W
z o HAENENR mEENE EEEREN wmERER °©

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Fig. 12. Power breakdown of different scenarios (from left to right in each scenario: UNI (equal), BA (equal),
BA (CPU/dyn), BA (CPU/dyn)-MEM).

5.5. Network Power Breakdown and Overall Performance Improvement

We summarize the overall performance improvement in Figure 12. In a 4-VC network,
applying all the techniques (buffer allocation, priority-based dynamic VC allocation,
and CPU-over-CU memory scheduling) leads to 23.0% performance improvement in
CPUs and 9.4% in CUs, by average of the four scenarios.

We analyze the breakdown of network power consumption in Figure 12. The power
consumption is obtained from ORION 6.5 [Kahng et al. 2009]. However, ORION lacks
the ability to model imbalanced port buffers in a NoC system. Thus, we elect to use
CACTI 6.5 [Muralimanohar and Balasubramonian 2009] to model the buffers and then
add the power consumption on top of the other parts of the network, which is calculated
from ORION. A major power overhead of CPU/dyn originates from the extra crossbars.
This part of power is obtained using the power report from Synopsys Design Compiler
[Bhatnagar 1999].

By average of the four scenarios, the link power, clock power, buffer power, and
crossbar + arbiter power contributes 19.8%, 29.4%, 26.4%, and 25.2% to the total power
consumption in BA (CPU/dyn)-MEM. The overall power consumption of BA (CPU/dyn)
and BA (CPU/dyn)-MEM increases by 14.5% and 15.6% compared with UNI (equal).
The power consumption is mainly due to the speedup of execution, which leads to faster
data transmission.

The power increase of BA (CPU/dyn) from BA (CPU) mainly results from the newly
added crossbars at each of the router ports. The newly added crossbar increases the
router power by 11.6% and therefore increases the overall power consumption by 7.1%
compared with the BA (CPU) scheme.

6. RELATED WORK

Many recent studies focus on the design of a CPU and GPU integrated computing
architecture. For example, Yang et al. [2012] proposed a CPU-assisted pre-execution
algorithm to accelerate the execution of GPUs. Although some other researchers [Lee
et al. 2009; Becker et al. 2009; Brown et al. 2012; Spafford et al. 2012; Power et al.
2013; Cao et al. 2014] studied the heterogeneous computing system, they mainly focus
on the applications, simulation, or the mapping algorithm.

Most previous work [Yuffe et al. 2011; Saha et al. 2009; Lee et al. 2012] used a ring-
style network to connect CPU and GPU cores. This is only feasible when the number
of cores is small. In order to handle future large sets of processing cores and heavy
communication burdens, an on-chip network is necessary within the chip.

Only few existing works focus on the interconnect network structure. For exam-
ple, Mishra et al. [2011b] propose to use heterogeneous routers and links to satisfy

ACM Journal on Emerging Technologies in Computing Systems, Vol. 11, No. 4, Article 42, Pub. date: April 2015.

iConn: A Communication Infrastructure for Heterogeneous Computing Architectures 42:21

varied communication demands at different areas of a chip multi-processor. Compared
with Mishra et al. [2011b], our article provides better granularity. Moreover, Mishra
et al. [2011b] only adopt two types of routers: big and small. By contrast, our design
assigns the size of buffers at finer granularity. Besides, Mishra et al. [2011b] target
only homogenous CMPs with a fixed number of cores (e.g., 64). Our work focuses on
the heterogeneous computing system. To our best of our knowledge, our work is the
first which explores the characteristics of the on-chip network in the heterogeneous
computing environment.

7. CONCLUSIONS

In this article we proposed the iConn communication structure which provides an
optimized interconnect design in the CPU-GPU integrated computing architecture.
In iConn, we investigated the heterogeneous router architecture, aiming to better
utilize the tight-budget on-chip resources. We propose to relocate the buffers across all
routers following a finite queuing-network-based mathematical model. We also propose
to use priority-based VC allocation to guarantee bandwidth for latency-sensitive CPUs
in a congested environment. Also, the CPU-over-CU memory controller scheduling
algorithm further helps the priority-based VC allocation. Our simulation shows that
the performance of CPUs and CUs improves by 23.0% and 9.4%, respectively, after
applying all the techniques.

REFERENCES

Dennis Abts, Natalie D. Enright Jerger, John Kim, Dan Gibson, and Mikko H. Lipasti. 2009. Achieving pre-
dictable performance through better memory controller placement in many-core CMPs. In Proceedings
of the International Symposium on Computer Architecture (ISCA09).

Amd Inc. 2014. APP SDK - A complete development platform. http:/developer.amd.com/tools-and-
sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/ (Last accessed 2/2015).

Rajive Bagrodia, Richard Meyer, Mineo Takai, Yu-An Chan, Xiang Zeng, Jay Marting, and Ha Yoon Song.
1998. Parsec: A parallel simulation environment for complex systems. Comput. 31, 10, 77-85.

Ali Bakhoda, John Kim, and Tom Aamodt. 2010. Throughput-effective on-chip networks for manycore accel-
erators. In Proceedings of the IEEE | ACM International Symposium on Microarchitecture (MICRO’10).

Ali Bakhoda, George L. Yuan, Wilson W. L. Fung, Henry Wong, and Tor M. Aamodt. 2009. Analyzing CUDA
workloads using a detailed GPU simulator. In Proceeding of the IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS’09).

Aaron Becker, Isaac Dooley, and Laxmikant Kale. 2009. Flexible hardware mapping for finite element
simulations on hybrid CPU/GPU clusters. In Proceedings of the Symposium on Application Accelerators
in HPC (SAAHPC’09).

Himanshu Bhatnagar. 1999. Advanced ASIC Chip Synthesis: Using Synopsys’ Design Compiler and Prime-
Time. Kluwer Academic.

Nathan Binkert, Bradford Beckmann, Steven K. Reinhardt, Gabriel Black, Ali Saidi, et al. 2011. The gem5
simulator. ACM SIGARCH Comput. Archit. News 39, 2.

Rajesh Bordawekar, Uday Bondhugula, and Ravi Rao. 2010. Can CPUs match GPUs on performance with
productivity? Experiences with optimizing a flop intensive application on CPUs and GPU. Res. rep.
RC25033, IBM T. J. Watson Research Center.

Pierre Boudier. 2011. Memory system on fusion APUS - The benefits of zero copy. AMD Fusion Developer
Summit.

Nathan Brookwood. 2010. AMD fusion family of APUS: Enabling a superior, immersive PC experience.
Insight 64, 1-8.

Michael Brown, Axel Kohlmeyer, Steven Plimpton, and Arnold Tharrington. 2012. Implementing molecular
dynamics on hybrid high performance computers particle-particle particle-mesh. Comput. Phys. Comm.
183, 3, 449-459.

Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike Houston, and Pat Hanrahan.
2004. Brook for GPUs: Stream computing on graphics hardware. In Proceedings of the International
Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 04). ACM Press, New York,
777-786.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 11, No. 4, Article 42, Pub. date: April 2015.

42:22 Z. lietal

Wei Cao, Chuan-Fu Xu, Zheng-Hua Wang, Lu Yao, and Hua-Yong Liu. 2014. CPU/GPU computing for a multi-
block structured grid based high-order flow solver on a large heterogeneous system. Cluster Comput. 17,
2, 255-270.

Martijn Coenen, Srinivasan Murali, Andrei Ruadulescu, Kees Goossens, and Giovanni De Micheli. 2006. A
buffer-sizing algorithm for networks on chip using TDMA and credit-based end-to-end flow control. In
Proceedings of the 4'" International Conference on Hardware/Software Codesign and System Synthesis
(CODES/ISSS’06). 130-135.

Bill Dally. 2011. Project Denver processor to usher in new era of computing. http:/blogs.nvidia.com/
2011/01/project-denver-processor-to-usher-in-new-era-of-computing/ (Last accessed 3/2012).

William Dally and Brian Towles. 2004. Principles and Practices of Interconnection Networks. Morgan Kauf-
mann, San Fransisco.

Isaac Gelado, John E. Stone, Javier Cabezas, Sanjay Patel, Nacho Navarro, and Wen-Mei W. Hwu. 2010. An
asymmetric distributed shared memory model for heterogeneous parallel systems. In Proceedings of the
International Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS’10).

Nilanjan Goswami, Zhongqi Li, Ajit Verma, Ramkumar Shankar, and Tao Li. 2012. Integrating anophotonics
in GPU microarchitecture. In Proceedings of the 21° International Conference on Parallel Architectures
and Compilation Techniques (PACT’12).

Nilanjan Goswami, Zhongqi Li, Ramkumar Shankar, and Tao Li. 2014. Exploring silicon nanophotonics in
throughput architecture. IEEE Des. Test. 31, 5, 18-27.

Donald Gross, John F. Shortle, James M. Thompson, and Carl M. Harris. 2008. Fundamentals of Queueing
Theory. 4™ Ed. Wiley-Interscience, New York.

John Henning. 2006. SPEC CPU2006 benchmark descriptions. ACM SIGARCH Comput. Archit. News 34, 4,
1-17.

Jingcao Hu and Radu Marculescu. 2004. Application-specific buffer space allocation for networks-on-chip
router design. In Proceedings of the International Conference on Computer-Aided Design (ICCAD’04).

Andrew Kahng, Bin Li, Li-Shiuan Peh, and Kambiz Samadi. 2009. ORION 2.0: A fast and accurate NoC
power and area model for early-stage design space exploration. In Proceeding of the Design, Automation
and Test in Europe Conference (DATE09).

David Kanter. 2010. Intel’s Sandy Bridge microarchitecture. http:/www.realworldtech.com/sandy-bridge/1/
(Last accessed 3/2012).

Khronos Opencl Working Group. 2011. The OpenCL specification, version 1.2. https://www.khronos.org/news/
press/khronos-releases-opencl-1.2-specification.

Avinash Karanth Kodi, Ashwini Sarathy, and Ahmed Louri. 2008. iDEAL: Inter-router dual-function energy
and area-efficient links for network-on-chip (NoC) architectures. In Proceedings of the International
Symposium on Computer Architecture (ISCA08).

Jaekyu Lee, Si Li, Hyesoon Kim, and Sudhakar Yalamanchili. 2012. Design space exploration of on-chip
ring interconnection for a CPU-GPU architecture. Tech. rep. GIT-CERCS-12-05, Georgia Institute of
Technology.

Paul Lee, Jiayuan Meng, Zhenyu Qi, Mircea Stan, and Kevin Skadron. 2009. Design space exploration for
integrated CPU-GPU chips. In Proceedings of the NVIDIA GPU Technology Conference (GTC’09).

George Michelogiannakis, Dionisios Pnevmatikatos, and Manolis Katevenis. 2007. Approaching ideal NoC
latency with pre-configured routes. In Proceedings of the 1 International Symposium on Networks-on-
Chip (NOCS’07). IEEE Computer Society, 153—162.

Asit Mishra, Narayanan Vijaykrishnan, and Chita R. Das. 2011a. A case for heterogeneous on-chip inter-
connects for CMPs. In Proceeding of the International Symposium on Computer Architecture (ISCA'11).

Asit Mishra, Aditya Yanamandra, Reetuparna Das, Soumya Eachempati, Ravi Iyer, Narayanan
Vijaykrishnan, and Chita Das. 2011b. RAFT: A router architecture with frequency tuning for on-chip
networks. J. Parallel Distrib. Comput. 71, 5, 625-640.

Naveen Muralimanohar and Rajeev Balasubramonian. 2009. Cacti 6.0: A tool to model large caches. Tech.
rep., HP Laboratories.

Nvidia Corp. 2008. NVIDIA CUDA compute unified device architecture. Programming guide 2.0.

Jason Power, Arkaprava Basu, Junli Gu, Sooraj Puthoor, Bradford Beckmann, Mark Hill, Steven Reinhardt,

and David Wood. 2013. Heterogeneous system coherence for integrated CPU-GPU systems. In Proceed-
ings of the IEEE /| ACM International Symposium on Microarchitecture (MICRO’13).

Scott Rixner, William J. Dally, Ujval J. Kapasi, Peter Mattson, and John D. Owens. 2000. Memory access
scheduling. In Proceedings of the Annual International Symposium on Computer Architecture (ISCA’00).
128-138.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 11, No. 4, Article 42, Pub. date: April 2015.

iConn: A Communication Infrastructure for Heterogeneous Computing Architectures 42:23

Smith Ryan. 2011. AMD Radeon HD 7970 review: 28nm and graphics core next, together as one.
http://www.anandtech.com/show/5261/amd-radeon-hd-7970-review (Last accessed 10/2012).

Bratin Saha, Xiaocheng Zhou, Hu Chen, Ying Gao, Shoumeng Yan, Mohan Rajagopalan, Jesse Fang, Peinan
Zhang, Ronny Ronen, and Avi Mendelson. 2009. Programming model for a heterogeneous x86 platform.
ACM SIGPLAN Not. 44, 6, 431-440.

Semiconductor Industry Association. 2005. International technology roadmap for semiconductors (ITRS).
http://www.itrs.net/Common/2005ITRS/Home2005.htm (Last accessed 3/2010).

Gary Silcott and Irmina Blaszezyk. 2013. AMD unveils innovative new APUs and SoCs that give con-
sumers a more exciting and immersive experience. http:/ir.amd.com/phoenix.zhtml?c¢=74093&p=irol-
newsArticle&ID=1772053 (Last accessed 1/2014).

Daniel J. Sorin, Mark D. Hill, and David A. Wood. 2011. A Primer on Memory Consistency and Cache
Coherence. Synthesis Lectures on Computer Architecture. Morgan and Claypool.

Kyle Spafford, Jeremy Meredith, Seyong Lee, Dong Li, Philip Roth, and Jeffrey Vetter. 2012. The tradeoffs of
fused memory hierarchies in heterogeneous computing architectures. In Proceedings of the 9" Conference
on Computing Frontiers (CF’12). 103-112.

Richard Vuduc, Aparna Chandramowlishwaran, Jee Choi, Murat Guney, and Aashay Shringarpure. 2010. On
the limits of GPU acceleration. In Proceedings of the USENIX Conference on Hot Topics in Parallelism
(HotPar’10).

William Winkle. 2012. AMD fusion: How it started, where it’s going, and what it means. http:/www.
tomshardware.com/reviews/fusion-hsa-opencl-history,3262-4.html (Last accessed 1/2014).

Yi Yang, Ping Xiang, Mike Mantor, and Huiyang Zhou. 2012. CPU-assisted GPGPU on fused CPU-GPU
architectures. In Proceeding of the Symposium on High Performance Computer Architecture (HPCA'12).

Marcelo Yuffe, Ernest Knoll, Moty Mehalel, Joseph Shor, and Tsvika Kurts. 2011. A fully integrated multi-
CPU, GPU and memory controller 32nm processor. In Proceeding of the International Solid-State Circuits
Conference (ISSCC’11).

Received March 2014; revised July 2014; accepted September 2014

ACM Journal on Emerging Technologies in Computing Systems, Vol. 11, No. 4, Article 42, Pub. date: April 2015.

