

Power-performance Co-optimization of Throughput Core Architecture using
Resistive Memory

Nilanjan Goswami, Bingyi Cao and Tao Li

Intelligent Design of Efficient Architectures Laboratory (IDEAL)
Department of Electrical and Computer Engineering, University of Florida

{nil, caobingyi}@ufl.edu, taoli@ece.ufl.edu

Abstract

Massively parallel computing on throughput computers
such as GPUs requires myriad memory accesses to register
files, on-chip scratchpad, caches, and off-chip DRAM. Unlike
CPUs, these processors have a large register file and on-chip
scratchpad memory, which consume a significant portion of
compute core power (35%-45%). In this paper, we introduce
novel throughput architecture by integrating resistive memory
(Spin Transfer Torque RAM) inside the compute core, which
reduces leakage significantly, but introduces write power
overhead and longer write latencies in GPU shared memory
and register file accesses. We enhance the compute core by
introducing register file organization with differential memory
update mechanism to remove update redundancy during write
operations. Furthermore, using merged register-write-
mechanism and write-back buffer, we coalesce multithreaded
GPU register write accesses to save write energy. In addition,
we introduce hybrid shared memory design using SRAM and
STT-MRAM that provides significant leakage/dynamic power
savings without affecting performance. On average, across 23
GPGPU/graphics workloads, our schemes save 46% dynamic
power due to register access (83% leakage power saving) with
negligible performance degradation. On average, hybrid
shared memory provides 10% reduction in dynamic power
with maximum 1.6× performance improvement for the current
workloads at no additional area overhead.

1. Introduction
In recent years, GPUs have experienced tremendous

growth as general purpose throughput processors with
products from Nvidia and AMD [1, 2]. As throughput-
computing devices, GPUs have multiple shader cores
composed of thread-schedulers, ALUs, load/store units,
large register file, scratchpad memory, caches etc. Unlike
graphics computing, general purpose GPU computing
(GPGPU) exposes shader cores as massively parallel
compute cores. Using a high bandwidth, low latency on-
chip interconnect, compute cores communicate with the on-
chip cache and off-chip memory. GPGPUs achieve
teraFLOPs peak performance by executing thousands of
threads in parallel, while consuming large amounts of
energy [3]. This trend of throughput computing has pushed
the limits of GPU design to optimize its microarchitecture
and programming paradigm to achieve higher performance
per watt [3-6], while still lowering average power (around

130W [3]). We have verified these claims for the Nvidia
GTX470 GPU using current sensors [7] for Nearest
Neighbor (NN, 140W peak) and LU Decomposition (LU,
170W peak) in Figure 1.

Compute cores have large on-chip memory and a

register file built using CMOS-based SRAM memory. With
growing transistor density in GPU dies, leakage power has
begun to dominate the overall chip power for deep-sub-
micron CMOS processes. To characterize the power
behavior of GPUs, we have developed architecture level
GPU power model in GPGPU-Sim [8] (see Section 5). The
characterization reveals that on average across 23 GPGPU
workloads, register file and shared memory dynamic power
consumption is 44% and 7% of the total core power,
respectively. Leakage power is 17% and 20% for register
file and shared memory respectively. The leakage is even
greater design impediment for sub-32nm technology nodes.
Hence, to reduce overall compute core power consumption,
it is imperative to re-architect various memory components
of the compute core using emerging technologies.

The latest developments in magnetic junction transistor
(MJT) based spin-transfer torque magnetic random access
memory (STT-MRAM) demonstrate almost zero leakage
power, better scalability, smaller foot-print, non-volatility,
and radiation resistance [9, 10]. These improvements
suggest that STT-MRAM may be a suitable replacement
for on-chip SRAM based memory. Unlike SRAM, resistive
memories rely on non-volatile, resistive information
storage in a cell, and thus exhibit near-zero leakage in the
data array [10]. Moreover, according to ITRS projections,
STT-MRAM is expected to replace SRAM for on-chip
memory designs [11]. Recently, Everspin Technologies
[12] has officially announced commercialization of world's
first STT-MRAM chip. In addition, IBM, Samsung and

Figure 1. GPU power consumption in Watts

52"

82"

;2"

342"

372"

3:2"

2"

;0
;7
"

3;
0;
7"

4;
0;
7"

5;
0;
7"

6;
0;
7"

7;
0;
7"

8;
0;
7"

9;
0;
7"

:;
0;
7"

I
R
W
"R
q
y
gt
"*
Y
+"

Vkog"*U+"

NW"

52"

82"

;2"

342"

372"

2"
46
0;
7"

6;
0;
7"

96
0;
7"

;;
0;
7"

34
60
;7
"

36
;0
;7
"

39
60
;7
"

3;
;0
;7
"

44
60
;7
"

46
;0
;7
"

49
60
;7
"

I
R
W
"R
q
y
gt
"*
Y
+"

Vkog"*U+"

PP"

Grandis Inc. are currently actively working on STT-RAM
commercialization process. The STT-MRAM provides
almost 4× more cell density and similar read latency
compared to SRAM [13, 14]. STT-MRAM does not have
write endurance problem (1015 writes [15]). Furthermore,
STT-MRAM is capable of high performance operations
and CMOS process compatible, which makes it suitable for
wide range of applications [16]. However, STT-MRAM
suffers from longer write latencies and higher write
energies compared to SRAM [9]. To write a “0” or “1” into
an STT-RAM cell, a strong current is necessary to reverse
the magnetic direction of the storage node (Magnetic
Tunnel Junctions, or MTJ). The latency and energy
overhead associated with the write operations of these
emerging memories has become a major obstacle in their
widespread adoption [17]. In this work, we propose
architectural enhancements in GPU compute cores to
recuperate possible performance and energy losses
involved due to STT-MRAM writes; hence, we achieve
significant leakage power savings with negligible latency
and energy due to writes.

As throughput-computing devices, GPUs execute
multiple instances of identical or different sequence of
instruction streams (GPGPU kernels) simultaneously to
achieve higher overall performance, similar to graphics
applications. Therefore, to preserve overall throughput of
the graphics and GPGPU applications while lowering the
overall power budget, we propose architectural
enhancements in STT-MRAM based GPU on-chip memory
design that hide the higher write latency of STT-MRAM
based memory while decreasing overall write energy by
using an arrayed register file design. The key idea is to
reduce write accesses to the STT-MRAM based memory at
the granularity of updated register array; explicitly
unmodified register arrays are not written. Furthermore,
using SRAM based small write-back buffers, we coalesce
(wider update) multiple register writes from different
threads in GPGPU thread-batches within a single register
bank to reduce the register write energy. To address shared
memory performance degradation due to slower STT-
MRAM writes, we introduce a hybrid shared memory
architecture based on SRAM and STT-MRAM. Because
different applications exhibit temporal locality, spatial
locality or a mixture of both in shared memory access, we
propose SRAM configurable for either cache or scratchpad
and dedicate STT-MRAM exclusively for scratchpad use.
Heavy write intensive applications with inherent temporal
locality access the STT-MRAM scratchpad using SRAM
cache. For other applications, the shared STT-MRAM and
SRAM scratchpad reduces write latency. We obtain this
hybrid design without any additional overhead due to area
saving in STT-MRAM design.

Our work makes the following contributions:
• A novel STT-MRAM design customized for GPUs to

achieve lower write latency, lower energy, higher
performance, and higher endurance at the cost of lower
retention time (see Section 3).

• A STT-MRAM based GPU register file design that
reduces leakage power and overall energy footprint of the
compute cores. To recuperate the STT-MRAM write
power overhead, we have designed a register file that is
comprised of several arrays. Instead of updating the entire
register during write operation, we update certain arrays
within the register if any bit within the array is flipped.

• A SRAM/STT-MRAM based hybrid shared memory
design to obtain leakage/dynamic power savings due to
resistive memory, while keeping the performance intact.

• A method to reduce the overall energy consumption and
leakage power by augmenting the shader core design with
STT-MRAM based read-only on-chip caches.

The rest of this paper is organized as follows. Section 2
provides background and motivation of the work. Section 3
and 4 presents the proposed STT-MRAM based novel
compute core design. Section 5 presents our experimental
methodologies. In Section 6 we evaluate our design.
Section 7 highlights previous research in this area. Section
8 concludes the paper.
2. Background and motivation

Figure 2. Dynamic power profile of compute cores

In single-instruction-multiple-data (SIMD) throughput
processors, data computations in compute cores consume
35% to 45% (50W-85W across workloads) of total GPU
power. This includes power consumption in integer/floating
point units (ALU), special functional units (SFU), thread-
scheduler, various on-chip caches, register file, and shared
memory accesses [3]. In Figure 2, we show power
consumption breakdown of the compute core components
across several GPGPU and graphics workloads simulated
using a customized McPAT [18] based GPU power model
and GPGPU-Sim v3.0.1b [8] (see Section 4). Around 70%-
90% of total compute core power is consumed by execution
units (25%-45%), register file (20%-40%), fetch-decode
unit (1%-10%), and shared memory (2%-40%) accesses.
Since increasing compute core count almost linearly
(assuming all cores are occupied) increases overall GPU
power consumption, power optimization of intra-core
components (such as register file, shared memory, on-chip
caches etc.) is imperative to limit the energy consumption
of the whole system. In this work, we primarily focus on
energy consumption of the compute cores due to on-chip
memory accesses’ dynamic and leakage power. To reduce
the leakage power for deep-submicron technology nodes,
we propose resistive memory (STT-MRAM) based GPU
compute core design. However, STT-MRAM based
memory shows dynamic power overhead due to larger

2'"
42'"
62'"
82'"
:2'"
322'"

O
O
"

O
V
"

86
J
"

N
KD
"

P
Y
"

N
R
U
"

T
C
[
"

U
N
C
"

U
V
5F
"

D
H
U
"

J
[
"

P
G
"

R
P
U
"

D
P
"

E
R
"

H
Y
V
"

N
W
"

P
P
"

R
T
"

D
R
"

I
U
"

P
S
W
"

U
T
C
F
"

O
gc
p
"

Hgvej/Fgeqfg" Kpuvtwevkqp"Ecejg" Eqpuvcpv"Ecejg"
N3"Ecejg" Vgzvwtg"Ecejg" Ujctgf"Ogoqt{"
Tgikuvgt"Hkng"*Tgcf+" Tgikuvgt"Hkng"*Ytkvg+" Gzgewvkqp"Wpkvu"

write energy requirement. In addition, longer write
operation to these memory cells poses performance threat
for GPGPU applications.

Intuitively, temporal locality of the register file access
can be exploited using a small SRAM based cache to
reduce write accesses to the STT-MRAM based large
register file. To justify the feasibility of such design, we
characterize the temporal locality of the GPU register write
operations. Figure 3 reveals reusability of dynamically
generated register updates during kernel execution. Across
23 GPGPU/graphics workloads, only 15 workloads have
20% or more 1-time register update. Using a small register
file cache (RFC) [4] and dedicated memory update of one-
time-register-writes, it is possible to reduce main register
file write overhead. For rest of the workloads and
unforeseen emerging throughput workloads, using RFC
might be insufficient. Moreover, for deep-sub-micron
technologies, leakage cannot be reduced by such methods.
Hence, resistive memory (low or almost no leakage) on-
chip storage solutions are imperative to address deep-sub-
micron GPU core designs. We choose STT-MRAM based
memory design due to significantly lower leakage power of
these memory cells for sub-32nm technologies [9].

Figure 3. Reusability of registers write-back data

Figure 4. Percentage register file write (in bits)

Figure 5. Shared memory write (in bits) profile

Therefore, we propose STT-MRAM based on-chip GPU
memory design with architecturally optimized write access
techniques. Due to larger energy consumption overhead,
the write accesses need to be regulated to reduce the
compute core power. Moreover, longer write latency also
regulates the performance of the compute core. Intuitively,
reduced memory cell updates are directly proportional to
the write energy consumption. Hence, to understand the
write update behavior of on-chip memories, we have
characterized actual bit flip operations of register write for
23 GPGPU/graphics workloads. In Figures 4 (register file)

and 5 (shared memory), we show that actual bit flips during
write operation are significantly smaller compared to total
write count multiplied by write access width. Surprisingly,
for our workload set, only NW shows maximum 45% of bit
flips of total writes. On average, only 20% of write
operations flip the register cells. Similar trend is observable
for shared memory in Figure 5. Write dominated workloads
(PR, FWT, SRAD, GS, BN) show relatively small fraction
of bit flips during shared memory writes (15%, 40%, 35%,
2%, 20%). On average, less than 10% bits are flipped
during shared memory write. This insinuates architectural
memory write enhancements to restrict unnecessary
memory updates and reduce write energy.

3. Resistive memory and cell design
The STT-MRAM memory cell comprises of a MTJ and

an access transistor (Figure 6). The MTJ device consists of
two magnetic layers separated by a thin dielectric material.
The dielectric acts as a tunnel for moving current between
the magnetic layers. The access transistor is a CMOS, and
the MTJ magnetic material is grown over the source and
drain regions of the transistors. The MTJ device stores a
“0” or “1” based on the direction of the free layer in
contrast to the pinned layer. If the direction of both
magnetic layers is same, the MTJ exhibits low resistance
and represents “0” state. Contrasting magnetic directions
represents “1”. Therefore, to perform a write operation on
MTJ, either a positive or negative voltage should be applied
between the top and the bottom electrodes for writing a “0”
or “1” respectively. A transistor and a MTJ cell are coupled
through word-lines and bit-lines to form memory arrays.
Each cell is read by driving the appropriate word-line (WL)
that connects the relevant MTJ to the bit-line (BL) and
source line (SL). When a small bias voltage (0.1V) is
applied across the WL and BL, it senses the current passing
through the MTJ using a current sensing amplifier
connected to the BL.

Unlike SRAM, MTJ based resistive memory has high
read speed, unlimited read and write endurance, and good
compatibility with CMOS processes. Unlike 6 CMOS-
based SRAM cell, the leaky CMOS based access transistor
of STT-MRAM cell has no gate and sub-threshold leakage
due to grounded SL, BL and WL lines. The MTJ device of
STT-MRAM acts as a resistor only. Therefore, STT-
MRAM consumes almost no leakage power compared to
SRAM. However, STT-MRAM cell shows faster read
access and slower write access capabilities compared to
SRAM cell. The read speed is determined by three factors.
Firstly, how fast the capacitive WL can be charged to turn

2'"
42'"
62'"
82'"
:2'"
322'"

O
O
"

O
V
"

86
J
"

N
KD
"

P
Y
"

N
R
U
"

T
C
[
"

U
N
C
"

U
V
5F
"

D
H
U
"

J
[
"

P
G
"

R
P
U
"

D
P
"

E
R
"

H
Y
V
"

N
W
"

P
P
"

R
T
"

D
R
"

I
U
"

P
S
W
"

U
T
C
F
"

Tgcf"3" Tgcf"4" Tgcf"5" Tgcf"6" Tgcf"@6"

0
10
20
30
40
50
60

0%
20%
40%
60%
80%

100%

M
M

M

T
64

H

LI
B

N

W

LP
S

R
AY

SL

A

ST
3D

B

FS

H
Y

N
E

PN
S

B
N

C

P
FW

T
LU

N

N

PR

B
P

G
S

N
Q

U

SR
A

D

G
M

%
 A

ct
ua

l U
pd

at
e

Actual Register Update Unnecessary Register Update
% Actual Update

0
10
20
30
40
50

0%
20%
40%
60%
80%

100%

M
M

M

T
64

H

LI
B

N

W

LP
S

R
AY

SL

A

ST
3D

B

FS

H
Y

N
E

PN
S

B
N

C

P
FW

T
LU

N

N

PR

B
P

G
S

N
Q

U

SR
A

D

M
ea

n

%
 A

ct
ua

l U
pd

at
e

Actual Shmem Update Unnecessary Shmem Update
% Actual Update Rkppgf"

Nc{gt

Htgg"Nc{gt

Vwppgn"Dcttkgt"Nc{gt

Rkppgf"
Nc{gt

Htgg"Nc{gt

Vwppgn"Dcttkgt"Nc{gt

*c+ *d+

Cpvk/rctcnngn
Jkij"Tgukuvcpeg
Uvcvg"›3fi

Rctcnngn
Nqy"Tgukuvcpeg
Uvcvg"›2fi

Vqr/
gngevtqf

Dqvvqo/
gngevtqf

Vqr/
gngevtqf

Dqvvqo/
gngevtqf

UN DN

YN

OVL

*E+

Figure 6. Block diagram of STT-RAM cell

on the access transistor. Secondly, how fast the BL can be
raised to the required read voltage to sample the read-out
current. Finally, how fast the sense amplifier reads. On the
contrary, the write operation requires activating the access
transistor, and applying comparatively higher voltage that
can generate enough current to modify the spin of the free
layer. MTJ performs such operation in three different
modes: under thermal activation mode through the
application of a long, low-amplitude current pulse (>10ns)
or under a dynamic reversal regime with intermediate
current pulses (3-10ns) or in a precessional switching
regime with a short (<3ns), high-amplitude current pulse
[19]. In a 1T-1MTJ cell with a fixed size MTJ, a trade-off
exists between volatility and write-time. In our design, we
sacrifice the non-volatility of STT-SRAM based register
file and shared memory. Unlike [20], we have redesigned
the MTJ (See Table 1) cell that has smaller free layer by
using relaxed non-volatility mechanism [9]; smaller
technology node (22nm) compared to [20] makes free layer
even smaller. It provides much smaller cell size and 33%
reduction in write energy. This results in reduced retention
time, which is still long (0.1ms i.e. at 1.25GHz clock
125000 cycles) enough for the on-chip memory in GPU
where data is updated much faster. However, special
purpose long term registers such as program counters, stack
pointers etc. are implemented using SRAM to address data
remembrance issue.

Table 1. Redesigned STT-MRAM and baseline
SRAM cell parameters

Parameters STT SRAM
Cell Size 9F2 50F2
Switching Current 54μA -
Switching Time 5ns -
Write Energy 0.58pJ/bit 0.32pJ/bit
MTJ Resistance (Rlow/Rhigh) 1500/3000 Ω -
Retention Time 0.1ms -
Write Latency 1.4ns 0.77ns

4. Resistive memory based compute core
 In this section, we introduce the STT-MRAM and
SRAM based GPU compute core on-chip memory
architecture that includes write-optimized (latency and
energy) register file design for GPU, hybrid shared memory
architecture, STT-MRAM based on-chip read only cache
design.

4.1 Arrayed register file organization with
differential memory update

In Figure 7, we have shown the register unit architecture
for our throughput processor based on operand collector
architecture [21]. Unlike traditional SRAM based register
file, we design the entire register file memory array using
STT-MRAM based memory cells. The design provides
lower dynamic and leakage energy consumption compared
to SRAM based main register file. In addition, the design
also enhances read performance and reduces die footprint.
However, STT-MRAM memory exhibits significantly
longer write latency and consumes higher write energy.
According to register write characterization in Section 2, a
large percentage of register write does not result in memory
cell modification. Intuitively, at register word granularity
(width of the register write bus per register file bank), we
can compute the actual memory cell modifications (0è1 or
1è0) by comparing the content of the register word and the
register write back data generated by the compute core
pipeline. By ignoring the unchanged memory cell, we
obtain a register write mask at register word granularity. In
each register bank interface, we propose to design a
differential memory update unit (DMU), which will be
responsible for calculating the mask at the register word
granularity. In addition, by checking the set bits of the
mask, the DMU will also provide per-bit word-line enable
signal. Since the bank arbitration unit in operand collector
always prioritizes the write operation over the read in each
bank, for any incoming write request the DMU will read
the current content of the register to generate the mask.
Finally the mask will restrict large amount of current drawn
by the unchanged bit-lines connected to the STT-MRAM
cells. In the context of GPU, it will reduce a large
percentage of register file access power without affecting
the performance. Since the thread warps are scheduled in
an interleaved fashion in GPU compute core pipeline, the
latency of additional read operation during the write does
not affect consecutive register read latencies and overall
performance. Due to the fact that STT-MRAM read energy
is significantly smaller compared to SRAM read, the
overall energy consumption of register write is reduced due
to masked memory update. We choose read-before-write
memory update as opposed to early write termination
(EWT) [22] for three reasons. Firstly, register reuse interval
is long enough to prevent performance degradation due to
additional read. Secondly, considering additional energy
overhead (0.0457nJ/cell) of EWT circuit and unchanged
cell (0.148pJ/cell) the read energy (0.013nJ/cell) is
significantly lower (71%) [22]. Thirdly, in terms of area

Bank Request
Arbiter

Bank Bank Bank Bank
…

Crossbar

Operand
Collector

Operand
Collector

…

Dispatcher
(Integer ALU)

Dispatcher
(Float ALU)

…

Address
Generation

Unit

Integer ALU Float ALU…

Reg. Read

STT-RAM
Registe

File

Reg. Write

WriteBack
With

Coalescing
Buffer

DMU DMU DMU DMU

DMU: Differential Memory Update

Figure 7. Differential Memory Update based
GPU register unit architecture with STT-RAM

and design complexity, the implementation overhead of
EWT leaves read-before-write as a better choice.

Figure 8 shows the microarchitecture of the DMU. At
the beginning, it treats each register write with a warp as
read operation. So it enables the read-line of the register
word using the address of the write request register. It
compares the existing and incoming value of register word
in read-before-write union (RBW) to generate a mask that
acts as an enable signal. Finally, it uses write enable signal
(WES) to determine whether to execute the write operation
for the cell or not. However, per-bit write enable signal
needs an additional address decoder; as a result it incurs
large area overhead. To avoid area overhead and still
perform masked register write, we propose novel arrayed
register bank architecture. We propose to split an N bit
register word into M arrays of K bits/array; where N =
M×K. These arrays will be resident in a single bank, but
will have separate decoder and write enable signals.
Therefore, each K bits of the array share a single word-line
enable signal. Philosophically, this reduces the granularity
write operations. Register write characterization reveals
that GPGPU kernels frequently update contiguous memory
cells within a register. This opens up the opportunity of
register update with granularity of multiple contiguous bits.
Hence, instead of per-bit modification, we introduce per
array modification in the bank. Single bit modification
within the array will trigger whole K bit array write. We

explore several values for determining the array width
(K=1,2,4,8,16), in terms of area overhead and power saving
in Section 6. Moreover, in the context of GPUs, arrayed
register file memory layout opens up finer granular clock
gating opportunities to further reduce dynamic energy
consumption.

4.2 Coalesced register update
The register unit receives write requests from the write-

back stage of the compute core pipeline. During register-
write operation, every bank can write at most one register
word, which is determined by the width of the per-bank
register file write bus. Generally, each register word update
requires entire register bank word-line to be activated.
However, in the proposed arrayed architecture, total array
activation count depends upon number of updated arrays
which is less than or equal to the total array count that
constitutes a whole row. Unwanted activation results in
unnecessary power consumption. Intuitively, using wider
access width can significantly reduce such power loss.
With a wider write-port, greater number of bits per row can
be written thus saving row activation energy.

In throughput architecture, thousands of threads work in
smaller batches (warp). Within each warp, threads work in
lock step fashion and generate several register write
operations in quick succession. All the register writes
within a single batch go to a single register bank in the
traditional GPU. For each thread, the write requests are
serviced at register word granularity. Hence, to service the
entire warp, several cycles are wasted. However, using
wider register write port, GPU warps can finish the pending
register writes at faster rate. Naturally, it also opens up the
performance improvement opportunity as well.

At any given time, several active warps are resident in a
GPU. Often, individual warps access several registers from
a single bank. Therefore, using per-bank write request
buffering, we can coalesce multiple register writes across
different warps that are writing to the same row of the

Figure 9. Coalescing register access using
write-back buffer

Figure 8. Microarchitecture of DMU (K=4)
with multi-array register bank organization

A
dd

re
ss RBW union Rt_D0

Rs_D0
Wr_D0

R
B

W
_O

0

Enable writeline

W
SE

RBW_O0

RBW_O1

RBW_O31

C : NV memory cell
Wr_D : Write data bits
RBW : Read before write
Wr_D : Write data bits
WES : Write enable signal
Column Ckt. : Column circuit
WD : Write data

Differential Memory Update

A
dd

re
ss

 D
ec

od
er

 0

Column
Ckt. B0

W
rsR

0

Register Cell Array 0WL_rs_R0

32 bit register

RBW
union

Wr_D0

En
ab

le
 w

rit
el

in
e

C C C

CCC

C CC

RBW
union

RBW
union

Wr_D1 Wr_D3

Column
Ckt. B1

Column
Ckt.B3

W
ES

 0
WL_rt_R0
WL_w_R0

WL_rt_R3
WL_rs_R3

WL_w_R3

R
rsR

0
R

rtR
0

W
rtR

0

W
rsR

3
R

rsR
3

R
rtR

3
W

rtR
3

R
tD

0
R

sD
0 R
tD

3
R

sD
3

D
at

a
(3

2
bi

t)

Figure 10. Register write-back coalescing flow

SP 1

SP 2

SP N

… …

Control and Coalescing Logic

SP: Single Processor

Buffer 1

Buffer 2

Buffer N

…

Bank 1
Reg Container Addr. Pointers

Bank 2
Bank 3

Bank M

Update Scoreboard

…

Wide
Reg
Write

1
2
3

M

Start

Received result
from SP

Store in register
container associated

with the SP

Store entry in address
pointer storage

corresponding to the bank

Look ahead to the
next cycle result

Buffers (data/
pointers) exceed

capacity

Generate narrow writes
and update scoreboard

Generate Wider
writes

and update
scoreboard

Yes

No

register bank. To this end, we propose per-bank buffered
write-back architecture to enable intra and inter-warp
register write coalescing within each bank. We explore an
optimum register write access width to determine the size
of register write port while considering area, power and
performance tradeoffs. Figure 9 shows buffered write-back
stage architecture based on [23]. Unlike latency based
buffering in [23], we propose per-SIMD lane (8-32
lanes/compute core) buffer and per-bank write address
buffers. Figure 10 shows the steps involved in the
coalescing process. The coalescing logic searches the per-
bank address buffer to merge multiple register writes going
to adjacent cells in a row of a register bank. Each bank with
pending requests generates wider write request in each
cycle by releasing the data from the register content buffer.
Simultaneously, the scoreboard that manages read-after-
write hazard is also updated to indicate multiple register
release. We propose to implement SRAM based buffers
due to smaller sizes of these buffers and faster performance
requirement.

4.3 Hybrid shared memory architecture
Shared memory or software managed on-chip

scratchpad memory in GPUs provide additional
performance improvement opportunity for GPGPU
applications. By exploiting application behavior, GPGPU
developers manage repetitive data access using shared
memory. In essence, it behaves like software-managed
cache for GPGPU applications. The data access behavior of
GPGPU applications exhibits four different patterns:
temporal locality across warps, spatial locality across
warps, mix of temporal/spatial locality across warps and,
no locality. Applications with shared data locality among
warps can further be optimized using shared memory
caching with no additional programming overhead.
Contrastingly, applications with no or low locality shared
data access can be optimized using increased shared
memory size. Moreover, on average, most of the GPGPU
applications have multiple kernels (execution phases) that
are temporally separated. For those, the shared memory
access pattern within a single application changes during
the overall execution period. Intuitively, to resolve these
issues we need larger cached shared memory. However,
this will introduce power consumption overhead in the
existing SRAM based shared memory design.

To this end, we propose to implement configurable
hybrid shared memory architecture that has SRAM and
STT-MRAM based memory cells. Using STT-MRAM in
shared memory design, we can reduce dynamic power,
leakage power and area. We propose additional SRAM
based shared memory area that can be configured using
software level APIs to behave as cache or RAM. For
temporal or spatial locality shared memory access,
additional SRAM based cache reduces STT-MRAM
access. Using compiler assistance, we forward last SRAM
cache eviction data to the next level of memory avoiding
STT-MRAM. Moreover, to avoid redundant STT-MRAM

cell write operations, we use read-before-write based
differential memory update (DMU) architecture. In
essence, this architecture not only reduces STT-MRAM
shared memory write access latency using SRAM cache,
but also lowers energy consumption by using differential
memory update. In addition, we further power gate the
SRAM section of the shared memory to reduce power for
applications with fewer shared memory update. In Section
6, we provide details about the area overhead and
power/performance tradeoff of the design while varying the
size of these memories. Note that existing GPGPU
workloads do not optimize the kernels for cached shared
memory access. Therefore, maximum potential of the
cached architecture is unexplored. In brief, hybrid shared
memory architecture provides the following benefits for
GPGPU architectures: it reduces overall leakage power
using STT-MRAM, addresses performance and energy
overhead due to STT-MRAM write process using SRAM
cache, and application level shared memory tuning offers
more flexibility to the application developer to optimize
performance and power of GPGPU applications that have
phase change behavior across the kernels.

4.3.1 Shared memory caching

Figure 11 shows the shared memory architecture with
SRAM cache. In GPU, several threads of a warp access
different banks of the shared memory. To keep shared
memory performance intact, we should keep bank level
access parallelism unchanged in our design. In
the proposed architecture, every SRAM cache line
compacts different threads of a warp that requests same tag
in different banks. This reduces total cache line
replacements per transaction. In the best-case scenario, this
leads to 1 replacement per transaction. In the worst-case
scenario, it leads to warp size count replacements per
transaction. For 32 threads per warp, it will generate 32
transactions. Since warps execute in lock-step fashion,
multiple replacements per transaction increase the warp
level access latency of the transaction. In Section 6, we
evaluate different design alternatives (direct mapped, set

… STT-
RAM

Bank K

DMUDMU

STT-
RAM

Bank 3

STT-
RAM

Bank 2

STT-
RAM

Bank 1

DMU DMU

DMU: Differential Memory Update
ReadWrite

Shared memory request/response from/
to compute cores

SRAM Configurable Cache/RAM

…

Unpack (Generate per Bank Req.)
…

Figure 11. Hybrid shared memory architecture

associative and fully associative) and properties (block
count, block size) of hybrid design. The SRAM cache
follows write-back policy. Intuitively, write-back policy
avoids unnecessary STT-MRAM writes. Any write-miss
during cache access writes the data to the SRAM cache but
does not fetch the data from the STT-MRAM (no write-
allocate policy). Since shared memory access is software
managed, having a unified cache does not hamper the bank
level parallelism much. During cache line replacement,
data is received and extracted by the DMU of each bank.
Finally, shared memory is updated only with the modified
bits. However, read miss is served directly by the banks
avoiding the DMU logic. Each cache line is equipped with
an additional bit to indicate final update. After final update,
cache line eviction sends the write-back to the next level of
memory by avoiding STT-MRAM write energy and latency
overhead.

4.4 Resistive read-only caches
 Excluding register file and shared memory, GPU
compute cores also contain several on-chip read-only
memory for texture mapping and storing constant data. In
brief, they are part of the fixed function logic in the GPU.
In GPGPU applications, these memories are used as read-
only caches to further expedite application performance.
Fixed function logic brings data into these caches from host
processor or other logic blocks of GPU pipeline. Due to
repetitive read access of the cached data, STT-MRAM
based memory significantly improves the read performance
and reduces dynamic read power and leakage
energy. Hence, energy and latency overhead of infrequent
data load from the off-chip memory location is
compensated by frequent read operations of these caches.
Also, STT-MRAM reduces area overhead of the caches.

5. Experimental setup
Table 2 shows the architecture level GPU power

simulator configuration that consists of GPGPU-Sim
v3.0.1b [8] with GPU power model. The throughput
architecture power model in power simulator is organized
in a three level hierarchy of the programmable logic blocks
available in GPU. At architectural level, the GPU is
decomposed into major components such as compute cores,
L2 cache, interconnect and memory controllers. Compute
cores are further divided into SIMD cores, fetch/decode
units, instructions issue units, on-chip caches, large register
file, shared memory, and thread-scheduler. At circuit level,
the architectural blocks are mapped to circuit structures like
arrays and complex logic. Caches are modeled as memory
arrays using CACTI [24] at the circuit level. Interconnect is
composed of signal links and routers. Router is composed
of flit buffers, arbiters and crossbars, which are modeled
analytically. The memory controller models the design by
Denali [25] and is composed of front-end-processing
engine and physical interface. While front end is modeled
using CAM and RAM structures, the latter two are modeled
empirically. At the device level, the model uses data from
ITRS roadmap [11] to calculate physical parameters of

devices, such as capacitance, resistance etc. The power
model uses relevant components from McPAT [18] and fits
them into the compute core pipeline. Unlike McPAT, the
GPU power simulator models multiple SIMD lane based
throughput processor pipeline that has contrasting
architecture compared to multicore processors. We validate
our power model against the power values generated by
actual power measurements using current
sensors [7] attached to a GTX 470 GPU.

Table 2. GPGPU-Sim configuration
Parameters Values
Compute Core Count 30 (10 cluster, 3 core/cluster)
Clock (Core/Icnt/MC) 1.25/0.65/0.8 GHz
Thread Batch Size 32
SIMD Pipe Width 32
Shared Memory 32KB
Shared Memory Banks 16
SHM Latency (Cycles) 20/20 (SRAM) 16/40 (STT)
Cache (L1/Cons/Tex) 16/8/4 (KB) per core
Threads / Core 1024
Memory Controller 8
Registers / Core 16K
Register File Banks 32
Register Latency (R/W) 2/2 (SRAM) 2/4 (STT) cycle
Interconnect Topology Mesh
Channel BW 32B
Technology Node 22nm

We have heavily instrumented GPGPU-Sim v3.0.1b [8]
to obtain register file, shared memory, on-chip cache
update statistics. Moreover, we have implemented the
latency model for all the on-chip memory models. Since
STT-MRAM cell has different latencies for read and write
operations, we have customized the simulator to have
different latencies for register read, register write-back,
shared memory load and shared memory store operations.
In addition, we have implemented differential memory
update mechanism within on-chip memory models.

We build a NGSPICE circuit model to obtain STT-
MRAM cell electrical characteristics. We use 22nm CMOS
process technology with a supply voltage of 0.9V. The
physical MOSFET model is based on 22nm BSIM [29].
The circuit model has two parameters: write pulse duration
(5ns [30]) and threshold current of MTJ devices. We
assume the size of MTJs is 50nm×75nm [31] with a critical
current density of 9×105A/cm2 [31]. The derived threshold
current is approximately 50uA, which is provided by
transistors fabricated using existing CMOS
technologies [32]. The MTJ is simulated using a constant
resistor in the STT-MRAM cell model, while multiple
time-varying resistors are used during switching
simulation. To model the latency and power of register file
and cache, we have implemented STT-MRAM cell model
in CACTI 6.5 [24] using NGSPICE simulation results as
input parameters.

Table 3. Simulated workloads [26-28] (AI: ALU
Inst. per Memory Inst., SHM: Shared memory)

Workload (Abbr.) AI SHM?
Matrix Multiplication (MM) 42.4 Y
Matrix Transpose (MT) 195.6 N
64 Bin Histogram (64H) 22.8 Y
LIBOR (LIB) 353.6 N
Needleman Wunsch (NW) 80.1 Y
Laplace Solver (LPS) 118.9 Y
Raytrace (RAY) 335.0 N
Parallel Prefix Sum (SLA) 1.9 Y
Stencil 3D (ST3D) 822.32 Y
Breadth First Search (BFS) 99.7 N
Hybrid Sort (HY) 32.1 Y
Nearest Neighbor (NE) 196.8 N
Petri Net Simulation (PNS) 411.5 Y
Binomial Options (BN) 39.4 Y
Columbic Potential (CP) 471.8 N
Fast Walsh Transform (FWT) 289.1 Y
LU Decomposition (LU) 3.49 Y
Neural Network (NN) 71.5 N
Parallel Reduction (PR) 1.0 Y
Back Propagation (BP) 167.6 Y
Gaussian Elimination (GS) 5.7 Y
N-Queen Solver (NQU) 209.3 Y
Speckle Reducing Anisotropic
Diffusion (SRAD) 14.0 Y

Using 23 real world GPGPU/graphics workloads, we
have evaluated the effectiveness of the proposed compute
core architectural enhancements to reduce energy
consumption. Table 3 lists the workloads which are
programmed using Nvidia CUDA APIs and possess good
mix of intense arithmetic computation (increased register
file access) and large local data sharing behavior (increased
shared memory access) [33, 34].

6. Results and analysis
The following subsections evaluate the STT-MRAM

based on-chip memory design benefits.

6.1 Register architecture evaluation

Figure 12. Power saving in DMU based (K=32)
register file with STT-MRAM based memory cell

Figure 12 shows the power savings of the proposed
STT-MRAM based register file architecture. The register
read power of the STT based memory is reduced by 49%
on average. Wire transfer power overhead of the read
operations is largely mitigated by the copious amount of
transistor switching power. Benchmarks such as NQU,

MT, ST3D, and MM show lower power savings due to
fewer read operations compared to the rest.

 On average, non-differential update based register file
with STT-MRAM cells show 1.43x increase in power
consumption due to write overhead. Heavy write dominated
workloads such as MM (1.81x), MT (1.55x), 64H (1.55x),
CP (1.55x), PNS (1.56x) and RAY (1.56x) suffer the most.
Using per-bit (K=32) write tracking, the differential
memory update saves write energy by 44% (SRAM
baseline) on average. GPGPU workloads with fewer bit
updates save write power by 82% (64H), 82% (BFS), 85%
(NE), 93% (PNS) and 92% (GS). On the contrary,
workloads such as MM, NW, LU, BP suffer power
overhead due to large amount of bit modification during
register write. Overall, the read and write operations for
these workloads save power by 11%(MM), 21%(NW),
17%(LU) and 22%(BP). Across 23 workloads, combined
read and write operations save 46% dynamic power on
average. LPS (72%), BFS (68%), GS (72%), NE (66%),
PNS (65%) and HY (63%) are the highest power saving
workloads. Due to area and power overhead, we have re-
architected the register file with multiple arrays per bank.
Figure 13 shows gradual increase in power saving as we
decrease the array width of arrayed register file
organization. On average, across 23 workloads, array width
of 2-bits, 4-bits and 8-bits provides 12%, 29% and 53%
power savings respectively. The area saving for additional
wiring and address decoder in these configurations are
50%, 25% and 12% compared to the 32array/bank
configuration (baseline). Due to contiguous register bit
update pattern in MM, MT, LU, NN, BP, LIB and 64H,
configurations such as K=4/8/16 consume power close to
K=32 configuration. Interestingly, LPS shows almost no
write power saving for K=4/8/16 configurations;
interleaved bit update pattern of this workload hides the
benefit of proposed scheme. Based on the power saving and
area overhead, K=8/4 configurations provide good tradeoff.
On average, STT-MRAM based register file reduces the
leakage power by 32% across 23 GPGPU workloads in our
design and 46% area compared to SRAM. Irrespective of
lower read and higher write latencies, performance
degradation of our design is negligible (see Figure 14)
across most workloads. Only BFS, NE and FWT show 4%,
3% and 3% performance degradation respectively due to
longer write latency of consecutive dependent instruction
scheduling from the same warp. Read dominated 64H

-25
0
25
50
75
100

0
25
50
75

100
125
150
175

M
M

M

T
64

H

LI
B

N

W

LP
S

R
AY

SL

A
ST

3D

B
FS

H

Y
N

E
PN

S
B

N

C
P

FW
T

LU

N
N

PR

B

P
G

S
N

Q
U

SR

A
D

M

ea
n %

 S
TT

 D
iff

er
en

tia
l W

rit
e

Po
w

er
 S

av
in

g

%
 P

ow
er

 S
av

in
g

STT Saving (Read) STT Overhead (Write)
% Total (Read+Write) Saving STT Differential Write Saving

Figure 13. Comparison of power saving in the
register file with variable array sizes (K=1,2,4,8,16)

0
50

100
150
200
250
300

M
M

M

T
64

H

LI
B

N

W

LP
S

R
AY

SL

A

ST
3D

B

FS

H
Y

N
E

PN
S

B
N

C

P
FW

T
LU

N

N

PR

B
P

G
S

N
Q

U

SR
A

D

M
ea

n

%
W

rit
e

Po
w

er
 S

av
in

g
(N

or
m

al
iz

ed
 to

 S
R

A
M

)

STT Power (K=1) STT Power (K=2) STT Power (K=4)
STT Power (K=8) STT Power (K=16) STT Power (K=32)

workload benefits from the faster read performance of the
STT-MRAM cell and achieves 4% performance gain.

Figure 14. Performance impact of STT-MRAM

based register file with DMU compared to pure
SRAM (baseline) implementation

Figure 15. Power saving / performance impact of
coalesced register update (baseline: pure SRAM)

Figure 15 shows the power and performance improvement
of register access coalescing in STT-MRAM based register
file. On average, coalesced writes save 9% of write power.
Benchmarks such as LIB (9.4%), PR (9.4%), RAY (9.3%),
and 64H (9.4%) provide maximum power benefit due to
contiguous active threads in a warp that access contiguous
registers in a row. Interleaved access pattern in BFS
(6.3%), NQU (6.7%) and NN (8 %) restricts the power
saving. In Figure 15, MM (79%), 64H (42%), ST3D (38%),
BN (29%) and CP (25%) experience good performance
improvement using the register write coalescing. Coalesced
access with wider write port reduces total number of
register writes generated by each warp. For example, N
threads/warp generates N write requests per warp that reach
same STT register bank. Regular coalescing of M
threads/coalesce with all active threads per warp reduces
total number of write request to N/M. This phenomenon
significantly improves the overall register write latency of
the workload and overall performance. However, in reality,
thread divergence and memory miss divergence within
warp reduces the active thread count that leads to non-
contiguous active threads in warps and increases number of
total inactive threads across all the warps. Therefore, MM,
64H, LIB, PR and RAY experience lower power saving
and performance benefit. Note that, register write
coalescing scheme will provide comparatively higher
power benefit in SRAM based memory array due to
additional CMOS transistors present in each memory cell
compared to STT. For 32-entry buffer, area overhead of
coalesced write-back architecture is only 0.1mm2 per
shader core.

6.2 Hybrid shared memory evaluation
Figure 16 shows the power savings due to hybrid-shared

memory. Across 23 GPGPU workloads, differential
memory update based STT-MRAM saves only 3% power
compared to SRAM based design. However, STT-MRAM
only shared memory saves 41%, 46%, 33%, 48% and 45%
memory access power for MM, NW, BFS, PNS and LU.
On the contrary, due to large percentage of memory write,
shared memory does not save additional power for several
GPGPU workloads. Benchmarks such as LPS, BN, FWT,
PR and GS have 29%, 27%, 51%, 98% and 49% write
access of total shared memory access respectively.
Therefore, un-optimized STT-MRAM shared memory
suffers significant power overhead in these workloads.
LPS, BN, FWT, PR and GS suffer 8%, 4%, 53%, 140%
and 48% power overhead respectively. On the other hand,

average performance degradation for STT only shared
memory is 5% (see Figure 17). However, consecutive
memory writes dominant workloads suffer significant
performance loss. For example, 64H, BN, NQU, SLA, LPS
and FWT experience 18%, 16%, 27%, 18%, 9% and 8%
performance degradation respectively. The correlation
between performance loss and power savings justifies the
co-optimization approach of hybrid-shared memory. Cache
is used to revive the performance and SRAM based
scratchpad memory extension reduces write energy
overhead. Hybrid shared memory improves the power
overhead of LPS (13%) and BN (15%). Using the proposed
scheme, FWT, PR and GS reduces power overhead by
3.8×, 2× and 4.4× respectively. Excessive write accesses
with significant amount of bit modifications during write
operations makes these workloads suffer power loss.

 Figure 18 compares the performance improvement of
hybrid-shared memory across several SRAM based cache

0.00001
0.0001
0.001
0.01
0.1
1
10
100
1000
10000
100000

96
97
98
99

100
101
102
103
104
105

M
M

M

T
64

H

LI
B

N

W

LP
S

R
AY

SL

A

ST
3D

B

FS

H
Y

N
E

PN
S

B
N

C

P
FW

T
LU

N

N

PR

B
P

G
S

N
Q

U

SR
A

D

G
M

A
dd

iti
on

al
 R

eg
is

te
r B

an
k

A
cc

es
s

M
is

s
in

 S
TT

x
10

00
00

IP
C

 N
or

m
al

iz
ed

 to
 S

R
A

M
 STT IPC Additional Register Bank Access Miss in STT

-5

15

35

55

75

95

5
6
7
8
9

10
11

M
M

M

T
64

H

LI
B

N

W

LP
S

R
AY

SL

A

ST
3D

B

FS

H
Y

N
E

PN
S

B
N

C

P
FW

T
LU

N

N

PR

B
P

G
S

N
Q

U

SR
A

D

M
ea

n %
 P

er
fo

rm
an

ce
 G

ai
n

%
 P

ow
er

% Write Power Saving % IPC Imrpovement

Figure 16. Power saving in hybrid shared memory

Figure 17. STT only shared memory performance
(normalized to SRAM)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

-150
-130
-110
-90
-70
-50
-30
-10
10
30
50

M
M

M

T
64

H

LI
B

N

W

LP
S

R
AY

SL

A
ST

3D

B
FS

H

Y
N

E
PN

S
B

N

C
P

FW
T

LU

N
N

PR

B

P
G

S
N

Q
U

SR

A
D

M

ea
n

W
rit

e
A

cc
es

s

%
 P

ow
er

 S
av

in
g

Only STT Saving Hybrid Saving
% Write Access

0
25
50
75
100
125
150
175
200

70

80

90

100

110

120

M
M

M

T
64

H

LI
B

N

W

LP
S

R
AY

SL

A

ST
3D

B

FS

H
Y

N
E

PN
S

B
N

C

P
FW

T
LU

N

N

PR

B
P

G
S

N
Q

U

SR
A

D

G
M

 %
C

ha
ng

e
in

 S
ha

re
d

M
em

or
y

St
al

l

N
or

m
al

iz
ed

 IP
C

STT IPC % Stall Compared to SRAM

configurations. 16KB and 32KB caches with 2-way and 4-
way set associativity recover the performance losses for
BN, NQU, SLA, and 64H. Hybrid shared memory
improves the performance of BN, NQU, SLA, and 64H by
40%, 42%, 30% and 40% respectively due to SRAM based
cache (16KB 2-way set associative) that backs up STT-
MRAM based scratchpad memory. The workloads add
14%, 15%, 12% and 12% additional performance
improvement after recovering the IPC loss due to STT-
MRAM only based shared memory design. FWT does not
achieve performance improvement and LPS shows 2%
performance degradation compared to SRAM based design.
Note that LPS and FWT do not improve using the hybrid
shared memory design. Special feature of these workloads
is simultaneous power and performance degradation due to
STT-MRAM write penalty. Close investigation reveals that
these workloads reuse recently written data at a faster rate
and overall write access density is also higher. Moreover,
during kernel execution, temporal/spatial locality (requires
cache) and intense write access with no locality (requires
RAM) of shared memory changes dynamically over time.
In future, dynamic switching between cache and RAM
access modes of shared memory might resolve this issue.

A 32KB STT-MRAM with 16KB cache and 64KB
STT-MRAM with 16KB cache saves leakage power by
82% and 106% respectively. A 32KB and 64KB STT-
MRAM shared memory saves the area by 0.011mm2 and
0.021mm2 respectively. 16KB and 32KB 2-way set
associative SRAM cache adds additional area of 0.015mm2

and 0.029mm2. Therefore, 32KB STT-MRAM with 16KB
SRAM cache or 64KB SRAM with 32KB cache have
negligible area overhead.

Figure 19. Percentage power savings using STT-
RAM based read-only memory in GPU

6.3 Evaluation of STT based on-chip caches
GPU on-chip caches significantly improve read-only

data access performance. Using STT-MRAM based
memory architecture saves significant leakage power in
addition to improving the performance. Figure 19 shows
that read-only caches save power by 34% on average

compared to SRAM. Excluding HY, PR and LU, most of
the GPGPU workloads show around 35% power savings
due to constant read access rate. However, PR, LU and HY
have limited read-only data accesses, which restricts their
large power improvements. On average, leakage power
savings due to resistive memory is 31%.

Figure 20. Overall power and performance

improvement using STT-MRAM architecture

6.4 Overall power and performance impact
Figure 20 shows overall power saving and performance

improvement of STT-MRAM based computer core
architecture using arrayed register file organization, hybrid
shared memory, and register write coalescing. On average,
across 23 GPGPU workloads the architecture saves 22%
power and improves performance by 16%. 64H (31%
power/68% IPC), BN (22% power/54% IPC), NQU (16%
power, 23% IPC) and ST3D (21% power/36% IPC) receive
most benefit using the architecture. All of these workloads
possess a large number of redundant register update,
temporally localized shared memory accesses, and
significant percentage of contiguously active threads in a
warp. On the contrary, BFS (32% power/18% IPC), HY
(29% power/2% IPC), PNS (29% power/2% IPC), NW
(30% power/ -2% IPC) and GS (32% power/8% IPC) have
ample amount of redundant register file writes, localized
shared memory accesses, and thread level inactivity in
warp with frequent reuse of register writes. These reduce
power consumption without improving the performance
significantly. Only FWT (16% power/-9% IPC) and BP
(11% power/-5% IPC) have moderate power with
performance degradation. FWT suffers maximum
performance degradation due to shared memory write
latency overhead introduced by STT. Shared memory write
latency also affects performance of BP. Using dynamic
switching between RAM and cache behavior during kernel
execution might resolve the performance degradation issue
of FWT and BP.

7. Related work
Zhao et al. [35] have proposed non-volatile FPGA

circuit based on the STT-MRAM. They further enhance the
power efficiency and the startup time of the design in [36].
Guo et al. [10] proposed the idea of applying MTJ device
to most of the on-chip storage to improve power efficiency
and maintain performance within 5% decrease. [9]
proposed the idea of relaxing the non-volatility of STT-
MRAM cells to reduce the high dynamic energy and slow
write latencies. In [22], Ping et al. proposed early write

15
20
25
30
35
40

M
M

M

T
64

H

LI
B

N

W

LP
S

R
AY

SL

A

ST
3D

B

FS

H
Y

N
E

PN
S

B
N

C

P
FW

T
LU

N

N

PR

B
P

G
S

N
Q

U

SR
A

D

G
M

 %
 P

ow
er

 S
av

in
g

-10
10
30
50
70
90
110

5
10
15
20
25
30
35
40

M
M

M

T
64

H

LI
B

N

W

LP
S

R
AY

SL

A
ST

3D

B
FS

H

Y
N

E
PN

S
B

N

C
P

FW
T

LU

N
N

PR

B

P
G

S
N

Q
U

SR

A
D

M

ea
n %

 P
er

fo
rm

an
ce

 G
ai

n

%
 P

ow
er

 S
av

in
g % Overall Power Saving % IPC Improvement

Figure 18. Performance improvement using

hybrid shared memory

:2"

322"

342"

362"

382"

O
O
"

O
V
"

86
J
"

N
KD
"

P
Y
"

N
R
U
"

T
C
[
"

U
N
C
"

U
V
5F
"

D
H
U
"

J
[
"

P
G
"

R
P
U
"

D
P
"

E
R
"

H
Y
V
"

N
W
"

P
P
"

R
T
"

D
R
"

I
U
"

P
S
W
"

U
T
C
F
"

'
"KR
E
"E
j
cp
i
g" UTCO"Pq/&" UVV"Pq/&" J["38M"&"*FO+"

J["38M"&"*4Y+" J["38M"&"*6Y+" J["54M"&"*FO+"

termination to avoid writing unnecessary bit flips by
reading the current content of the register for caches. Since
a heavy current pulse is applied at the end of the write
operation to alter the bit, [22] proposed to wait until the end
of the write pulse to determine the memory bit flip status.
In early write termination, considerable amount of energy
is wasted during the wait in the write process. Though it is
faster, the scheme consumes unnecessary power during the
wait. In GPUs, since the warps are further interleaved in
time, register reuse by the same warp provides enough time
to perform energy efficient but slower read-after-write
operations instead of faster but power consuming early
write termination. In [30], Sun et al. proposed buffered L2
cache to reduce the write access to the L2 cache. In
addition, they have proposed SRAM-MRAM based hybrid
3D L2 cache architecture. In [37], Wu et al. proposed
inter/intra cache level hierarchy design based on disparate
memory technologies. Unlike [30], we propose differential
memory update based shared memory organization using
software level configurable SRAM based cache/RAM and
resistive memory based RAM. For write intensive GPGPU
shared memory access applications, we use SRAM cached
resistive shared memory to reduce write latency and power.
On the contrary, GPGPU applications with balanced read-
write shared memory accesses still can benefit the
dynamic/leakage power saving of resistive memory without
compromising the performance. In essence, to achieve
write power reduction and faster write performance, we
exploit GPGPU/graphics workload behaviors to enhance
the throughput core architecture by differential memory
update in a novel arrayed resistive memory organization.

Franklin et al. [38] analyzed the reusability of updated
register values and reuse interval for parallel processors.
Previously, ample amount of work discussed viability of
register file caches in terms of performance for CPU [39-
44]. Unlike register file latency, we aim to design energy
efficient throughput processor register files for deep-sub-
micron technology nodes (very low leakage). Recently,
Gebhart [4] proposed register file caches with hierarchical
thread scheduling for energy efficient design. However, the
work does not address the leakage issue of deep-sub-
micron technology nodes for any compute core memories.
We also incorporate architectural enhancements to reduce
write power and latency, which are overhead of the STT-
MRAM technology. Satyamoorthy [45] implemented
SRAM write-buffer to address write latency for STT-
MRAM based shared memory performance overhead and
reported 17% energy with 50% area saving. Instead, we
have enhanced shared memory architecture using
differential bit updater (write energy saving) and small
cache per shared memory bank (recuperate write latency
overhead).

In the context of phase change memory, Lee et al. [32]
proposed PCM cell read mechanism to improve the
endurance of the off-chip PCM based memory by avoiding
write operations. At L2 cache level, they check the dirty bit
at word granularity to check for the update status of the

memory word. In [46] Zhou et al. proposed PCM memory
with cell level write redundancy removal scheme to
improve endurance. Instead of word level or cell level
granularity, our techniques employ STT-MRAM based
register file and shared memory update at 4-16 bits
granularity. This reduces the update status check (1
check/cell) overhead compared to [46]. Moreover, using
new arrayed (2/4/8/16 bits) GPU register file organizations,
we reduce per-bit enable-signal-decoder area overhead with
only 16/8/4/2 decoder signals.

8. Conclusion
Larger on-chip memory components (register file,

shared memory, various caches) in throughput processors
become design impediment for deep-sub-micron
technology nodes due to excessive leakage power and
overall energy footprint. Emerging resistive memory
technologies such as STT-MRAM provide feasible on-chip
memory design alternative to address power problems.
However, such memory technologies have longer write
latency and higher energy consumption. To this end, we
propose on-chip memory organization for throughput
architectures using resistive memory that implements
differential memory update based STT-MRAM register file
and hybrid shared memory. The proposed architecture
reduces STT-MRAM write power for several on-chip
memories with 83% saving in leakage power. Resistive
memory based memory organization saves 46% of the
register file dynamic power with less than 1% performance
overhead. We further optimize the register file access
power by coalescing several consecutive register writes
with wider write ports and small SRAM based write-
buffers. This provides additional 8% power savings. By
incorporating SRAM and STT-MRAM based hybrid shared
memory organization with interchangeable cache and RAM
behavior of the memory, we can compensate the
performance loss due to STT-MRAM write latency and
improve the power efficiency. On average, hybrid shared
memory provides 10% power savings and 1.6×
performance improvement without any area overhead.

9. Acknowledgements
 This work is supported in part by NSF grants 1117261,
0937869, 0916384, 0845721(CAREER), 0834288,
0811611, 0720476, and by Microsoft Research Trustworthy
Computing, Safe and Scalable Multi-core Computing
Awards. Authors acknowledge UF HPC center for
providing computational resources.

10. References
[1] NVIDIA Corporation, “NVIDIA’s Next Generation CUDA
Compute Architecture: Fermi”, Nvidia White Paper, 2009.
[2] N. Brookwood, “AMD Fusion™ Family of APUs: Enabling a
Superior, Immersive PC Experience”, AMD White Paper, 2010.
[3] S. Hong and H. Kim, “An Integrated GPU Power and Performance
Model”, ISCA, 2010.

[4] M. Gebhart, D. Johnson, D. Tarjan, S. Keckler, W. Dally, E.
Lindholm, and K. Skadron, “Energy-efficient Mechanisms for
Managing Thread Context in Throughput Processors”, ISCA, 2011.
[5] A. Maashri, G. Sun, X. Dong, V. Narayanan and Y. Xie, “3D GPU
Architecture Using Cache Stacking: Performance, Cost, Power and
Thermal Analysis”, ICCD, 2009.
[6] H. Nagasaka, N. Maruyama, A. Nukada, T. Endo, and S.
Matsuoka, “Statistical Power Modeling of GPU Kernels using
Performance Counters”, ICGC, 2010.
[7] U.R.D. International, Inc. DC Current Sensor Model: HCS-20-10-
AP.
[8] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt,
“Analyzing CUDA Workloads Using a Detailed GPU Simulator”,
ISPASS, 2009.
[9] C. Smullen, V. Mohan, A. Nigam, S. Gurumurthi, and M. Stan,
“Relaxing Non-Volatility for Fast and Energy-Efficient STT-RAM
Caches”, HPCA, 2011.
[10] X. Guo, E. Ipek, and T. Soyata, “Resistive Computation:
Avoiding the Power Wall with Low-Leakage, STT-MRAM based
Computing”, SIGARCH Comput. Archit. News, vol. 38, no. 3, pp.
371–382, 2010.
[11] “International Technology Roadmap for Semiconductors,” ITRS,
2009.
[12] E. Technologies, “Everspin Debuts First Spin-Torque MRAM for
High Performance Storage Systems ”, 2012.
http://www.everspin.com/PDF/ST-MRAM_Press_Release.pdf.
[13] X. Dong, X. Wu, G. Sun, Y. Xie, H. Li, and Y. Chen, “Circuit
and Microarchitecture Evaluation of 3D Stacking Magnetic RAM
(MRAM) as a Universal Memory Replacement”, DAC, 2008.
[14] S. Lai and T. Lowrey, “OUM - A 180 nm Nonvolatile Memory
Cell Element Technology for Stand Alone and Embedded
Applications”, IEDM, 2001.
[15] F. Tabrizi, “The Future of Scalable STT-RAM as a Universal
Embedded Memory”, EETimes Design, 2007.
http://www.eetimes.com/design/embedded/4026000/The-future-of-
scalable-STT-RAM-as-a-universal-embedded-memory.
[16] C. Smullen, A. Nigam, S. Gurumurthi, and M.R. Stan, “The
STeTSiMS STT-RAM Simulation and Modeling System”, ICCAD,
2011.
[17] A. Mishra, X. Dong, G. Sun, Y. Xie, N. Vijaykrishnan, and C.
Das, “Architecting On-Chip Interconnects for Stacked 3D STT-RAM
Caches in CMPs”, ISCA, 2011.
[18] S. Li, J. Ahn, R. Strong, J. Brockman, D. Tullsen, and N. Jouppi,
“McPAT: An Integrated Power, Area, and Timing Modeling
Framework for Multicore and Manycore Architectures”, MICRO,
2009.
[19] R. Buhrman, “Spin Torque MRAM - Challenges and Prospects”,
DRC, 2009.
[20] Y. Chen, X. Wang, H. Li, H. Xi, Y. Xie, and W. Zhu, “Design
Margin Exploration of Spin-Transfer Torque RAM (STT-RAM) in
Scaled Technologies”, Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, vol. 18, no. 12, pp. 1724–1734, 2010.
[21] S. Liu, J. Lindholm, M. Siu, B. Coon, and S. Oberman, “Operand
Collector Architecture”, U.S. Patent 7834881, 2010.
[22] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “Energy Reduction for
STT-RAM Using Early Write Termination”, ICCAD, 2009.
[23] S. Ranganathan, “High Performance Architecture for a Write-
back Stage”, U.S. Patent 7519794, 2009.
[24] S. Thoziyoor, N. Muralimanohar, J. Ahn, and N. Jouppi, “CACTI
6.5”, hpl.hp.com. http://www.hpl.hp.com/research/cacti.
[25] Denali Software, Inc., “Using Configurable Memory Controller
Design IP with Encounter RTL Complier”, Cadence CDNLive, 2007.

[26] NVIDIA Corporation, “GPU Computing SDK”,
developer.nvidia.com, 2010. http://developer.nvidia.com/gpu-
computing-sdk.
[27] Impact Research Group, “Parboil Benchmark Suite”,
impact.crhc.illinois.edu, 2010.
http://impact.crhc.illinois.edu/parboil.php.
[28] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S. Lee, and K.
Skadron, “Rodinia: A Benchmark Suite for Heterogeneous
Computing”, IISWC, 2009.
[29] Y. Cao, T. Sato, M. Orshansky, D. Sylvester, and C. Hu, “New
Paradigm of Predictive MOSFET and Interconnect Modeling for
Early Circuit Simulation”, CICC, 2000.
[30] G. Sun, X. Dong, Y, Xie, J. Li, and Y. Chen, “A Novel
Architecture of the 3D Stacked MRAM L2 Cache for CMPs”, HPCA,
2009.
[31] M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo,
K. Yamane, H. Yamada, M. Shoji, H. Hachino, C. Fukumoto, H.
Nagao, and H. Kano, “A Novel Nonvolatile Memory with Spin
Torque Transfer Magnetization Switching: Spin-Ram”, IEDM, 2005.
[32] S. Lee, H. Lee, S. Kim, S. Lee, and H. Shin, “A Novel Macro-
Model for Spin-Transfer-Torque based Magnetic-Tunnel-Junction
Elements”, Solid-State Electronics, vol. 54, no. 4, pp. 497–503, 2010.
[33] NVIDIA Corporation, “NVIDIA CUDA Programming Guide”.
[34] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable
Parallel Programming with CUDA”, ACM Queue, vol. 6, no. 2, pp.
40–53, 2008.
[35] W. Zhao, E. Belhaire, Q. Mistral, E. Nicolle, T. Devolder, and C.
Chappert, “Integration of Spin-RAM Technology in FPGA Circuits”,
ICSICT, 2006.
[36] W. Zhao, E. Belhaire, C. Chappert, F. Jacquet, and P. Mazoyer,
“New Non-volatile Logic based on Spin-MTJ”, Physica Status Solidi
(a), vol. 205, no. 6, pp. 1373–1377, 2008.
[37] X. Wu, J. Li, L. Zhang, E. Speight, R. Rajamony, and Y. Xie,
“Hybrid Cache Architecture with Disparate Memory Technologies”,
ISCA, 2009.
[38] M. Franklin and G.S. Sohi, “Register Traffic Analysis for
Streamlining Inter-Operation Communication in Fine-Grain Parallel
Processors”, SIGMICRO Newsletter, vol. 23, no. 1, pp. 236–245,
1992.
[39] R. Balasubramonian, S. Dwarkadas, and D. Albonesi, “Reducing
the Complexity of the Register File in Dynamic Superscalar
Processors”, MICRO, 2001.
[40] E. Borch, S. Manne, J. Emer, and E. Tune, “Loose Loops Sink
Chips”, HPCA, 2002.
[41] T. Jones, M. O'Boyle, J. Abella, A. Gonzalez, and O. Ergin,
“Energy-Efficient Register Caching with Compiler Assistance”, ACM
Trans. Archit. Code Optim., vol. 6, no. 4, pp. 1–23, 2009.
[42] J. Cruz, A. Gonzalez, M. Valero, and N. Topham, “Multiple-
Banked Register File Architectures”, SIGARCH Comput. Archit.
News, vol. 28, no. 2, pp. 316–325, 2000.
[43] P. Nuth and W. Dally, “The Named-State Register File:
Implementation and Performance”, HPCA, 1995.
[44] H. Zeng and K. Ghose, “Register File Caching for Energy
Efficiency”, ISLPED, 2006.
[45] P. Satyamoorthy, “STT-RAM for Shared Memory in GPUs”,
M.S. Thesis, School of Engineering and Applied Science, University
of Virginia, 2011.
[46] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A Durable and
Energy Efficient Main Memory using Phase Change Memory
Technology”, ISCA, 2009.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

