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Abstract— Growing deployment of power and energy efficient 
throughput accelerators (GPU) in data centers pushes the 
envelope of power-performance co-optimization capabilities of 
GPUs. Realization of exascale computing using accelerators 
demands further improvements in power efficiency. With 
hardwired kernel concurrency enablement in accelerators, 
inter- and intra-workload simultaneous kernels computation 
predicts increased throughput at lower energy budget. To 
improve Performance-per-Watt metric of the architectures, 
systematic empirical study of real-world throughput workloads 
(with simultaneous kernel execution) is required. To this end, 
we propose a multi-kernel throughput workload generation 
framework that will facilitate aggressive energy and 
performance management of exascale data centers and will 
stimulate synergistic power-performance co-optimization of 
throughput architectures.  

Keywords-GPGPU, Power-Performance Analysis, workload 
characterization. 

I.  INTRODUCTION 
To improved energy efficiency and better performance, 

the datacenters and supercomputers (Tianhe-1A, Nebulae, 
Tsubame) are increasingly adopting throughput computing 
architectures such as GPUs (Nvidia, AMD), dedicated 
accelerators (Intel MIC), IBM Cell processors. Parallel 
thread processing in throughput processors often shares 
hardware structures (shared memory, scheduling hardware, 
issue/decode unit, etc.) to compensate individual thread 
processing energy overhead. As a result, overall energy 
efficiency is enhanced. In those processors, energy 
efficiency, concurrent execution paradigm and performance 
improvement are intertwined. For example, increased 
concurrency and performance do not always map to 
improved energy and power efficiency. In this paper, we 
focus on kernel level concurrency that has a significant  

impact on performance and power. A thorough 
exploration of power-performance characteristics of 
concurrent throughput kernels is still lacking. There is a need 
to identify a representative mix of workloads, which will 
reduce overall energy footprint and retain throughput. To this 
end, we propose a flexible methodology to amalgam 

emerging throughput workloads. To design an energy 
efficient architecture, architects need to understand energy 
and power implications of kernel level concurrency. Hence, 
we delve into the systematic exploration of throughput 
workloads that unleashes power-performance co-
characterization.  

II. POWER PERFORMANCE CO-CHARACTERIZATION 

Figure 1 depicts the flow of operations for multi-kernel 
workload generation.  
A. Throughput Benchmark Selection 

We have used Berkeley Dwarves [1] based systematic 
approach for throughput workload selection. To choose 
representative workloads that cover the dwarves, we have 
investigated Nvidia GPU computing SDK, Rodinia, Parboil, 
and several third party benchmarks. Workload selection 
process scrutinized the application purview (data-centers, 
mobile, desktop, embedded) of the workload, characteristic 
diversity of the benchmark based on [2] and expansion (with 
growing load) capability of workloads in scalable emerging 
systems. Application scope ensures broader impact, 
characteristic diversity guarantees architecture exploration 
capability, and scalability captures workload augmentation 
capability with larger input/system.  

TABLE I.  THROUGHPUT WORKLOAD SYNOPSIS 
Bench (Acronym) 

Breadth First Search (BFS) Computational Fluid Dyn. (CFD) 
Sum of Abs. Diff. (SAD) SparseMatrix DenseVector Mult. (SPMV) 
LU Decomposition (LUD Heart Wall (HW) 

Matrix Mult. (MM) Hybrid Sort (HY) 
Black Scholes (BS) Needleman-Wunsch (NW) 

Binomial Options (BN)  N-Queen Solver (NQ) 
Path Finder (PF) Advanced Encryption Std (AES) 

2D Convolution FFT (FFT) Lava MD2 (LM) 
Ray Trace (RAY) 

B. Performance-power Co-characterization Methodology 
Selected benchmarks in Table I are characterized in 

terms of microarchitecture agnostic behaviors [2] and 
microarchitecture dependent power-performance 
characteristics. Microarchitecture agnostic metrics unleash 
the intrinsic characteristics using generic workload properties 
(dynamic instruction count, memory/branch/atomic/shared-
memory instruction count etc.) and throughput workload 
specific properties (per-thread register usage, data transfer in 
between host and device, control flow divergence, memory 
access locality, thread-batch efficiency etc.). Contrarily, 
power-performance metrics expresses power and 
performance dissimilarities to help the co-characterization 
process. Precisely, power, energy, and temperature depict 
energy consumption aspect of the workloads; IPC indicates 
performance, communication overhead encapsulates 
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Fig 1.  Methodology 



performance degradation due to excessive host to device 
interaction and IPW/EDP captures co-optimization 
characteristics. 

Next, workloads from Table I are executed on real 
Nvidia hardware such as Tesla M2050, Tesla K20X, and 
GTX470. Using Nvidia Nsight Eclipse profiler, we have 
collected all the metrics. We have performed two separate 
PCA and clustering (hierarchical, kmeans) analyses. Such 
analysis unleashes similarity and dissimilarity information 
across the benchmarks and assists in selecting representative 
kernels. Based on workload scattering in various PC 
domains, we confirm that microarchitecture independent 
characteristics based workload diversity is successfully 
retained. Across GPUs with different power efficiency, 
power behavior based clustering changes significantly. 

To choose a set of representative multi-kernel throughput 
workloads, we assign a relation score to each throughput 
benchmark and create a workload database. The score is 
given to each benchmark in a cluster. There are multiple 
such clusters generated from the power and characteristics 
analysis. To avoid clustering artifact, we performed 
hierarchical and kmeans clustering simultaneously on all 
data. Since workload characteristics define the execution 
pattern, we assign greater weight to it. We have used cluster 
ensemble analysis on characteristic and power clusters for 
each GPU. The analysis provides the final set of clusters 
mentioned in Table II, and individual benchmark scores in 
the workload database.  

TABLE II.  THROUGHPUT WORKLOAD CLUSTERS 

Kmeans BN, 
CFD 

NW, 
LM 

AES, 
RAY, 
BFS 

BS, 
HY 

NQ, 
MM 

SAD, 
PF 

LUD, 
FFT SPMV HW 

Hierarchical 
BN, 
BS, 
HW 

AES, 
SPMV 

SAD, 
MM 

BFS, 
NQ 

LUD, 
FFT 

NW, 
PF 

LM, 
CFD HY RAY 

Consensus BN, 
HW 

BS, 
HY 

AES, 
SPMV 

MM, 
NQ 

BFS, 
RAY 

FFT, 
LUD NW, PF LM, 

CFD SAD 

III. RESULT AND CONCLUSION 
Figures 4 show hierarchical clustering (based on PCA) of 

all concurrent and sequential kernel workloads respectively. 
In most of the cases, concurrent kernels have large linkage 
distance with sequential kernels. Interestingly, often one or 
more kernels in clustered-workload show characteristic 
dominance within the benchmarks. For example, in 
MM_LUD, LUD and SAD_LUD_BN, dominant behavior of 
LUD keeps them in close proximity. Quantitative evidence 
suggests that sequential and concurrent kernels are truly 
dissimilar in nature. Intrinsic workload characteristics of 
sequential kernels dominate or subdue co-existing kernels in 
concurrent workload behavior. Figures 2, 3 and 5 show 
power-performance co-characterization of concurrent kernel 
workloads. PCA is performed based on first 3 PCs. In Tesla 
M2050, Tesla K20 and GTX470, the 3 PCs retain 95%, 93% 
and 94% cumulative variance respectively. Clustering trends 
in three generations of throughput architecture are distinct. 
As claimed by Nvidia, GTX470, M2050 and K20 GPUs 
show prominently disparate power-performance traits. Both 
being Fermi architectures, GTX470 and Tesla M2050 have 
different power efficiency due to power overhead of graphics 
capability of GTX470. Order of magnitude power efficiency 

improvement of K20 is clearly visible from M2050 and K20 
clusters. Interestingly, concurrent kernels (SPMV_RAY, 
SPMV_AES) with a common sequential kernel (SPMV) do 
not cluster together in any dendrogram. Unlike, intrinsic 
workload characteristics, individual workload dominance or 
subduing trend is absent in power-performance behavior of 
concurrent kernels. 
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Fig 2.  Dendrogram using 

power-performance characteristics 
Tesla K20 
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Fig 3.  Dendrogram based on 

Power-Performance Characteristics 
GTX470 
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Fig 4.  Dendrogram based on 

microarchitecture independent 
characteristics of all benchmarks 
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Fig 5.  Dendrogram based on 

power-performance 
characteristics of Tesla 

M2050 

In conclusion, we introduce a novel framework for multi-
kernel throughput workload generation and perform a 
thorough study of the proposed workloads in terms of 
performance, power, energy, utilization and interactions 
between them. Using real Nvidia GPUs of different 
generation and by varying application scope, we show that 
power-profile and concurrency are highly correlated. 
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