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Abstract—The relocation of high performance computing 
systems (HPC) to the cloud poses new challenges for data center 
architects and IT managers. These challenges are due to 
heterogeneity injected into data centers by cutting-edge 
virtualization technologies and hardware accelerators used to 
support emerging cloud applications and services. Although 
hardware accelerators like General Purpose Graphics Processing 
Units (GPGPUs) and virtualization technologies have been well 
studied and evaluated individually, a detailed analysis of their 
combined architectures and collective behavior from the data 
center point of view is lacking. 

Using real platforms and high performance computing 
workloads, we study the power performance tradeoffs due to 
various granularities of heterogeneity across hardware and 
software layers and expose hidden opportunities for optimizing 
overall data center efficiency. Our approach is to evaluate server 
power and performance from a data center point of view as 
opposed to evaluating hardware accelerators and virtualization 
technologies themselves. 

Our results show that performance on cloud is affected by 
virtualization overhead and fraction of serial code. Moreover, 
GPU workloads achieve 25% and 30% savings in power and 
energy consumption when executed on low power platforms; and 
only 50% of our GPU workloads are more energy efficient than 
their corresponding CPU implementations. The results also show 
that it is much more power efficient to collocate GPU virtual 
machines with non-GPU virtual machines. 

Keywords—heterogeneous; high performance computing; data 
center; efficiency; cloud 

I. INTRODUCTION 
High performance computing (HPC) has been associated 

with homogeneous high-performance systems supported by 
high-speed networks. However, due to frequent hardware 
refreshing and replacements, the underlying architecture is 
increasingly becoming heterogeneous [1]. Currently, GPUs are 
becoming a staple in HPC computing and thus adding another 
level of heterogeneity to the data center [2]. Significant 
performance inefficiencies can result if heterogeneity is not 
taken into consideration during scheduling [3]. Not only does 
heterogeneity affect performance, but it also affects power 
consumption. For example, GPUs consume substantially 
greater power than multi-core architectures [4] in return for 

performance. Figure 1 shows power profiles of eleven HPC 
benchmarks implemented in both CUDA (a programming 
model for GPUs) and OpenMP (parallel programming model 
that runs on multi-core CPUs). The benchmarks are executed 
sequentially on two identical platforms one with GPU and the 
other without. It is evident that the CUDA batch executes about 
2.25 times faster than OpenMP batch. The GPU profile is 
strongly pulse-shaped having a peak to idle power ratio of 3.4 
while the OpenMP profile is rather flat having a peak to idle 
power ratio of 2.7. CUDA consumes double the average power 
of OpenMP and has a peak power draw of 217W compared to 
70W for OpenMP. Such disparity in power draw imposes 
greater pressure on overall power consumption. Recent studies 
have shown that world-wide consumption for 2010 exceeded 
250 billion kWh, almost 1.5% of the world’s total electricity 
consumption [5], and the US consumed 100 billion kWh in 
2011 [6]. 

Figure 1. Power profiles of CUDA and OpenMP benchmarks 
 
In order to expand services and support new applications 

like remote workstations and cloud gaming, considerable 
efforts have been exerted to move HPC computing to the cloud 
[1,7,8]. However, these efforts have been met with some 
reluctance, mainly due to performance and management issues 
[9].  

Previous work [4,10,11] have evaluated GPUs themselves 
in non-virtualized systems, but evaluation of heterogeneous 
servers that contain GPUs within virtualized environments is 
lacking. In this work, we study the effects of heterogeneity on 
performance, power, and energy profiles for emerging 
platforms in virtualized data centers. Our results show that 
CUDA performance on cloud is affected by virtualization 
overhead and size of serial code. They also show that CUDA 
implementations are not always more energy efficient, and that 
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it is better to collocate OpenMP VMs with CUDA VMs than to 
collocate VMs of the same type. 

This paper is organized as follows: Section II provides a 
background on heterogeneity in HPC data centers on the cloud. 
Section III presents our experimental setup and test-bed. 
Section IV analyses experimental results. We present related 
work in Section V and our conclusion in Section VI. 

II. BACKGROUND 
The advent of virtualization and low cost GPUs has 

accentuated the effects of heterogeneity on data center 
performance and energy consumption. In this work, we 
consider four levels of heterogeneity: execution paradigm, 
virtualization, micro-architectural variations, and platform 
heterogeneity. 

A. Execution Paradigm 
We consider the application layer as a form of 

heterogeneity because the execution paradigm determines the 
architecture to be used. Traditionally, HPC workloads have 
been implemented in one of several parallel programming 
languages like MPI and OpenMP. OpenMP runs on a single 
symmetrical multi-processor (SMP) server under a single 
operating system domain. 

GPUs are parallel architectures optimized for high 
throughput by executing many concurrent threads. GPUs are 
installed in the Peripheral Component Interconnect (PCI) slots 
of a server. In this model, an application is written in a special 
programming interface like CUDA or OpenCL, to launch 
kernels. A kernel is a function callable from the host and 
executes on the GPU. Due to availability of massive 
parallelism, applications could experience significant speedups. 

B. Virtualization 
Virtualization has been employed in data centers to 

improve utilization through consolidation and is a corner stone 
in the cloud model due to its benefits in management, security, 
and live migration [12]. Virtual Machines (VMs) are software 
abstractions of hardware architectures [9] where a hypervisor 
(also called a Virtual Machine Monitor VMM) acts as an 
interface between applications and the underlying hardware. 

Virtualization allows multiple guest virtual machines to be 
collocated on the same physical server. Despite the advantages, 
performance issues due to virtualization overhead and 
management efficiency hinder the adoption of virtualization in 
HPC data centers [8,9]. Virtualization overhead results from 
the delay caused by the interface layer (VMM) while 
management difficulties are caused by the lack of management 
framework to map and dynamically distribute VMs and OS 
images to physical machines [8]. These issues have been 
addressed by providing PCI pass-through, OS-bypass, and 
bypass capabilities to I/O and peripherals with hardware 
support from CPU and chipsets [8,9,13,14]. Bypassing the 
hypervisor provides VMs with direct access to I/O and 
hardware, and improves performance significantly. This 
architecture allows a GPU to be attached or passed-through to 
a VM with minimum penalty on performance. In our 
experiments, we explore the effect of varying the number of 

VCPUs allocated to VMs running CUDA and OpenMP 
benchmarks. 

C. Micro-architectural Variations 
Unlike enterprise data centers, HPC data centers do not 

enjoy low utilization periods where typical power management 
techniques can be applied. Often, HPC data centers run batch-
type workloads for days with very little idle time. The main 
power management technique has been dynamic voltage and 
frequency scaling (DVFS) in which the voltage or frequency of 
the CPU clock are varied. The dynamic power of the CPU is a 
quadratic function of its operating voltage. Hence, reducing 
voltage/clock speed results in considerable power savings at 
the cost of longer execution times. Depending on platform 
architecture and configuration, the effectiveness of CPU 
frequency scaling varies widely. In particular, number of 
supported nodes, memory, storage, and GPUs can significantly 
shrink the savings fraction compared to total server power. 

D. Platform Heterogeneity 
New generations of low power architectures and processors 

are becoming popular in data center design. For example, 
Google data centers rely on commodity servers and 
architectures for low cost and high performance [2]. These 
architectures excel at running non-critical applications with 
little loading [15]. However, their use in HPC data centers may 
not be considered due to their low throughput. But if combined 
with a high-end GPU to shoulder the bulk of the computation, 
then the CPU’s role reduces to executing I/O and housekeeping 
serial code which does not require a high-end processor. Under 
this arrangement, overall power savings are possible because 
no intensive computation is performed on the low power CPU. 
This has direct effect on power consumption and cooling 
[16,17]. 

III. EXPERIMENTAL SETUP 
Our test-bed consists of two platforms summarized in Table 

I. Both platforms are identical except for the CPU. Each 
platform is configured with a GPU installed on the PCI slot 
through a riser card for easy access of power supply lines. A 
LabView virtual instrument controlled a data acquisition card 
NI PCI-6221 to collect current profile data from current 
sensors. To execute CUDA benchmarks, VMs are configured 
with PCI pass-through capability for attaching a GPU. To setup 
pass-through, the hardware must support hardware-assisted 
instruction set virtualization capability and I/O DMA 
remapping. 

We characterize benchmarks from Rodinia suite [10], 
which is designed for architectural studies on GPUs, and 
includes applications and kernels which target multi-core CPU 
and GPU platforms. The profiled benchmarks are listed in 
Table II. All benchmarks have implementations in CUDA and 
OpenMP respectively. We use Xen [14] as our virtual machine 
monitor. 

IV. CHARACTERIZATION OF WORKLOADS 
In this section, we characterize and compare profiles of 

CUDA and OpenMP implementations across various levels of 
heterogeneity. Based on our results, we propose guidelines to 
improve data center efficiency by leveraging heterogeneity. 



TABLE I.  HARDWARE TEST-BED 

CPU Intel i7 2600S, 4-core, TDP (65 W) 
CPU - Low Power Intel i5 3470T, 2-core, TDP (35 W) 
Motherboard GigaByte GA-H77M-D3H 
Server Memory 32 GB 
VM Memory 2 GB 
Storage 1 TB 
GPU Nvidia Tesla M2050 
Operating Systems Fedora 17, Xen 4.1.3, Ubuntu 12.04 
Data Acquisition System LabView, NI PCI-6221 
Current Sensors HCS-20-10-AP 

TABLE II.  WORKLOAD SYNOPSIS 

Benchmark Description 
Back Propagation (BP) Machine learning algorithm 
Breadth First Search (BF) Graph algorithms 
Heart Wall (HW) Tracks movements of hearts  
Hotspot (HS) Estimates processor temperature 
LavaMD (LV) Calculates particle potential, relocation 
LU Decomposition (LD) Algorithm to solve linear equations 
Nearest Neighbor (NN) Finds the k-nearest neighbors 
Needleman-Wunsch (NW) Nonlinear optimization for DNA 
PathFinder (PF) Dynamic programming to find paths 
SRAD (SR) Diffusion method for imaging 
Streamcluster (SC) Finds predetermined no. of medians 

TABLE III.  FRACTION OF SERIAL TIME 

 BP BF HW HS LV LD NN NW PF SR SC
OpenMP 0.70 0.98 0.001 0.48 0.0002 0.15 0.7 0.23 0.70 0.009 0.06

CUDA 0.94 0.99 0.3 0.87 0.34 0.9 0.9 0.75 0.92 0.28 0.67

A. Execution Paradigm 
Although virtualization has been well studied, no 

evaluation exists for virtual machines equipped with GPUs. In 
this set of experiments, we evaluate performance, power, and 
energy profiles for servers running VMs with pass-through 
GPUs. Due to virtualization overhead, execution times can be 
greater than those on bare metal systems. Figure 2(a) shows 
percent change in execution time for both implementations 
CUDA and OpenMP compared to their respective bare metal 
times. CUDA implementations show greater degradation than 
OpenMP due to virtualization. BF and CUDA SC incur the 
greatest degradation with 87% and 50% respectively. It is 
possible that BF has difficulties with memory access patterns 
and I/O delays in reading input data.  

Because of their high throughput and many cores, GPUs 
are capable of significant speedup of parallel code compared to 
multi-core CPUs. Figure 2(b) shows speedup of CUDA 
implementations relative to OpenMP using total execution time 
not just parallel code time. Four CUDA benchmarks indicate at 
least 4× performance improvement over OpenMP; for 
example, SR achieves a speedup of 5.8×. However, 
benchmarks BP, BF, HS, and NN actually run slower on GPUs 
due to CUDA overhead not due to virtualization. Unlike [10], 
which reports speedups only for the parallel code running on 
GPU, we show overall program speedup. Data centers are 
concerned with overall speedup since total execution time is 
what matters. Although parallel code alone may attain 
speedups of as much as 80, none of CUDA benchmarks 
reaches speedup of 6 for total execution time. 

Table III presents a closer view of program structure in 
terms of serial code fraction for both implementations. CUDA 
serial codes represent greater fractions than their OpenMP 
counterparts because CUDA parallel fractions are smaller. 
Serial code fractions (including IO) for five CUDA 
benchmarks are at least 90% of the total time. Only four 
OpenMP benchmarks have serial fractions greater than 70%. 
Serial code remains a limiting factor for achieving greater 
speedups for both implementations. 

The tradeoff for greater speedups in GPUs is power 
consumption; Figure 2(c) indicates that CUDA 
implementations consume between 2× and 4× the power of 
OpenMP across all benchmarks. In contrast, energy 
consumption is a mixed lot. Six CUDA benchmarks consume 
greater energy than their OpenMP versions; for example 
CUDA PF consumes almost 2× that of OpenMP 
implementation, but CUDA LD consumes 62% less energy. 
This suggests that not all CUDA workloads are more energy 
efficient than OpenMP implementations. 

Figure 3(a) shows that CUDA and OpenMP VM powers 
are within 5% and 10% of their bare metal powers. CUDA VM 
powers seem closer to bare metal because GPU power dwarfs 
any power increase due to virtualization and thus show smaller 
variation. Figure 3(b) compares CUDA’s average server power 
to peak server power; the maximum power consumed by a 
workload during execution. The dynamic range of peak power 
varies widely between 24%-123% of its average power. For 
example, peak power for LD is about 2.23× that of its average 
power while LV indicates only 24% increase. The actual power 
draw of GPUs rarely reaches its nameplate power rating. Our 
Tesla M2050 GPU is rated at 225W TDP [18] and Figure 3(b) 
indicates that total peak server power running CUDA 
workloads never reached 240W. Thus, a data center power 
infrastructure can be oversubscribed to maximize power 
efficiency and reduce stranded power [19,20]. Using our 
detailed power profiling, peak and average powers can be 
determined as shown in Figure 3(c). The figure shows a power 
trace for LV. GPU starts withdrawing its dynamic power as 
soon as a kernel is launched as indicated by the 12V lines. 

We can conclude that performance of OpenMP and CUDA 
workloads is affected by virtualization overhead and the degree 
depends on workload characteristics. We can also infer that 
serial code is a bottleneck for both especially CUDA 
workloads, and that architectures which maximize performance 
of serial code are essential for increasing speedup. In terms of 
energy consumption and efficiency, we found that only half of 
CUDA implementations were more efficient than OpenMP 
implementations. The heterogeneity due to GPU pass-through 
greatly improves the viability of future HPC computing on the 
cloud. 

B. Virtualization 
Another level of heterogeneity on the cloud is the set of 

resources allocated to VMs like number of virtual CPUs, 
memory size, storage size, and network bandwidth. In this 
section, we characterize benchmarks by varying the number of 
allocated VCPUs. 



 
(a) Timing with respect to bare metal (b) Speedup of CUDA relative to OpenMP (c) Power and energy consumptions 

Figure 2. Timings and power profiles 
 

(a) Comparison of VM to bare metal powers (b) CUDA average and peak server powers (c) Power trace for CUDA LV 
Figure 3. Power taxonomy 

 

(a) Execution time (b) Power (c) Energy 
Figure 4. VCPU profiles for CUDA VMs 

 

Since our CUDA benchmarks are single threaded, it is 
obvious that execution time does not vary with number of 
allocated VCPUs, as shown in Figure 4(a). Similarly, power 
and energy consumptions by CUDA benchmarks do not 
change with number of allocated VCPUs, Figures 4(b) and (c). 
In contrast, increasing number of VCPUs considerably 
improves performance of OpenMP benchmarks. For example, 
SR achieves 2.5× speedup after gaining three VCPUs. As 
expected, OpenMP benchmarks show noticeable change in 
power and energy consumptions as the number of VCPUs is 
increased (OpenMP figures not shown). For maximum 
efficiency in heterogeneous data centers on the cloud, it is best 
to re-claim excess VCPUs from CUDA workloads and re-
allocate them to other collocated VMs; this frees stranded 
resources and improves utilization. 

C. Micro-architectural Variation 
DVFS is a prevalent power management technique in data 

centers to throttle server power consumption at the expense of 
performance. The effect of power management on execution 
time in VMs for CUDA workloads is shown in Figure 5(a). 
Benchmarks HW, LV, and SR show very little response to 
increase in frequency while the rest show noticeable change. 
NW for example, shows 1.88× improvement in performance at 
3.8 GHz. The reason for the variation in performance is the 
fraction of serial code within the benchmarks. Power and 
energy consumptions follow same reasoning, as shown in 
Figures 5(b) and (c); amount of power or energy variation is 
directly related to the size of serial code affected by change in 
frequency. In contrast to CUDA workloads and as expected, 

OpenMP workloads react more energetically to variation in 
frequency. For example, HW achieves a speedup of 2.2× at the 
maximum frequency and experiences a 60% increase in power 
and 27% decrease in energy consumption (OpenMP figures not 
shown). CUDA workloads that contain a large fraction of 
parallel code are least affected by frequency scaling. DVFS 
affects code running on the CPU and has no effect on CUDA 
code running on the GPU. 

For power capping at the cost of small performance penalty 
and minimum change in power and energy consumptions, 
DVFS can be invoked on CUDA workloads containing a large 
parallel fraction. The large available parallelism in GPUs 
minimizes the effects on performance degradation in serial 
code.  However, for CUDA workloads with small parallel 
fraction, serial code is a bottleneck and frequency scaling has 
significant effect on performance, power, and energy 
consumptions. As expected, frequency scaling for OpenMP 
workloads can be applied to optimize for power or energy. 
VCPUs are decoupled from physical CPUs and Xen’s 
scheduling policy can be enabled to map CUDA workloads 
with large fraction of parallel code to CPUs with low 
frequency. CUDA workloads with small fractions of parallel 
code and OpenMP workloads can be mapped to CPUs with 
high frequency. This optimizes performance and energy 
consumption. 

D. Platform Heterogeneity 
New generations of low power processors serve a class of 

applications that does not require the rich set of configuration 
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(a) Execution time (b) Power (c) Energy 

Figure 5. DVFS profiles for CUDA VMs 
 

 
(a) Execution time (b) Power (c) Energy 

Figure 6. Platform heterogeneity for CUDA VMs 
 

 
(a) VCPU redistribution (b) Execution time due to DVFS (c) Power consumption with DVFS 

Figure 7. Consolidation of VMs 
 

options that come with high performance systems [15]. In this 
sub-section, we study the effects of low power architectures on 
HPC workloads using a platform with a Generation 3 low 
power Intel i5 processor (TDP 35W) and comparing it to a 
platform with a main stream i7 processor (65W). 

Figure 6(a) shows that CUDA performance on the low 
power platform is equal to or slightly better than the main 
stream platform except for two benchmarks PF and SC. This 
can mainly be attributed to high performance of I/O and serial 
code execution on the newer processor. In terms of power 
consumption, Intel i5 platform achieves 13% to 87% savings 
compared to the main stream platform, Figure 6(b). Similar 
energy savings that range from 12% to 62% are indicated in 
Figure 6(c).  

For CUDA workloads, the performance of platform 
architecture depends mainly on I/O system and serial code 
performance. In contrast, seven OpenMP workloads show 
better performance on the Intel i7 platform (figure not shown). 
This can be attributed to the intense competition among the 
parallel execution threads for a smaller set of available 
resources on the i5 platform. The results indicate that CUDA 
workloads running on low power platform architectures can 
deliver similar performance as main stream platforms because 
the bulk of the computation is offloaded to the GPU and the 
CPU’s task reduces to I/O and serial code execution. 

In terms of power and energy consumptions, low power 
platforms can potentially save 25% and 30% in power and 
energy compared to high-end platforms. GPU’s power is same 
on both platforms but the low power platform contributes less 
idle and dynamic powers to the total power than the main 
stream platform. 

E. Consolidation of Virtual Machines 
While performance and resource contention have been 

extensively studied in collocated environments, power 
efficiency of collocated VMs did not receive equal attention. In 
previous sections, we analyzed single VMs running on a 
physical platform. In this section, we analyze performance and 
power consumption of consolidated VMs under various 
resource and power management configurations. We select two 
representative benchmarks for consolidation. Figure 7(a) shows 
two collocated VMs, CUDA VM running SC and an OpenMP 
VM running NW. Five VCPUs are divided among both VMs; 
for example, the legend (1,4) means one VCPU for CUDA and 
four VCPUs for OpenMP. As shown in Figure 4, CUDA VMs 
do not benefit from extra VCPUs; however, OpenMP NW does 
benefit from additional VCPUs and execution time improves 
by 40% when four VCPUs are allocated. In Figure 7(b), DVFS 
is applied to both VMs and both show improvement in 
performance at higher frequencies; CUDA SC contains 67% 
serial code that is affected by the variation in frequency and 
improves by 27%. Due to resource competition, OpenMP NW 
takes three seconds longer to execute when collocated 
compared to running singly and improves by 25%. Figure 7(c) 
compares platform power consumption of consolidated VMs to 
those of individual VMs each running on its own platform. The 
figure shows that average platform power consumption of 
consolidated VMs (SC+NW) is almost the same as that of 
CUDA SC running alone. The consolidated power is 35% less 
than the sum of individual power consumptions for CUDA SC 
and OpenMP NW when each is running on its own platform 
(stacked bar). It is evident that a CUDA VM dominates total 
platform power and that power consumption due to a 
collocated OpenMP VM is negligible. The results show that 
while there is slight performance degradation, it is much more 
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power efficient to collocate OpenMP VMs with CUDA VMs 
than to collocate VMs of the same type or to run them 
individually on different platforms. The advantage is due to the 
disparity between GPU and CPU power consumptions, less 
competition for resources among different type VMs, and the 
fact that CPU power is only a small fraction of total platform 
power. This allows OpenMP VMs to piggyback on CUDA 
VMs for almost free power at the cost of about 25% 
degradation in performance in OpenMP NW’s case. Similar or 
greater degradation occurs if OpenMP VMs are collocated with 
other OpenMP VMs but at the cost of greater power 
consumption. 

V. RELATED WORK 
The closest work to ours is by Che et al. [10]. Our work 

extends but differs starkly from [10] in that our evaluation a) 
adopts the data center point of view not the GPU, b) is 
performed in a virtualized environment with GPU passed-
through thus incurring overheads, c) emphasizes total program 
execution time which is more relevant from the data center 
point of view, d) employs realistic heterogeneous test platforms 
(with/without GPUs). Mars et al. [1] exploit heterogeneity by 
mapping workloads to hardware using an opportunity factor 
that quantifies an application’s sensitivity to available 
heterogeneity. Nathuji et al. [21] leverage heterogeneity by 
mapping workloads to the best fitting platform using an 
analytical layer to predict workload power/performance. 
Delimitrou et al. [3] proposed an online scheduler that is 
heterogeneity and interference aware. Work on improving 
performance in virtual machines addressed improving I/O and 
pass-through capabilities. Huang et al. [8] proposed VMM-
bypass I/O and scalable VM image management to improve 
performance. Gupta et al. [22] reported that HPC performance 
on the cloud is viable especially for non-communication 
intensive applications. Reuther et al. [9] also advocate the use 
of virtual machines in HPC scenarios where productivity 
outweighs performance degradation. Our work builds on 
previous ideas but distinctly addresses exposing the available 
opportunities in heterogeneous HPC data centers with 
emphasis on GPU workloads. 

VI. CONCLUSION 
In this paper, we expose power performance tradeoffs due 

to available heterogeneity across real hardware and software 
layers in HPC data centers. We expose hidden opportunities for 
optimizing overall efficiency of data centers running VMs 
configured with GPUs. Our results show that the fraction of 
serial code is a bottleneck and especially limiting for speedups 
of CUDA workloads and that some CUDA benchmarks are 
less energy efficient than their corresponding OpenMP 
implementations. It is best to reclaim VCPUs from CUDA 
VMs and reallocate them to collocated VMs that do need them. 
Our findings also show that power management techniques can 
be applied to CUDA workloads with large parallel code 
running inside VMs without noticeable degradation. An 
interesting finding is that 25% and 30% power and energy 
savings are possible with no degradation in performance when 
CUDA workloads are executed on low power platforms as 
opposed to running on high end platforms. For greatest power 

efficiency, it is best to collocate OpenMP VMs with CUDA 
VMs than to collocate VMs of the same type. 

ACKNOWLEDGMENT 
This work is supported in part by NSF grants 1320100, 

1117261, 0845721 (CAREER), and by Microsoft Research 
Safe and Scalable Multi-core Computing Awards. 

REFERENCES 
[1] J. Mars, L. Tang, R. Hundt, “Heterogeneity in homogeneous warehouse-

scale computers: A performance opportunity,” IEEE Computer 
Architecture Letters (CAL), Vol. 10, 2011. 

[2] V. Mauch, M. Kunze, M. Hillenbrand, “High performance cloud 
computing,” Future Generation Computer Systems, Volume 29, 2013. 

[3] C. Delimitrou, C. Kozyrakis, “Paragon: QoS-aware scheduling for 
heterogeneous datacenters,” International Conference on Architectural 
Support for Programming Languages and Operating Systems 
(ASPLOS), 2013. 

[4] H. Nagasaka, N. Maruyama, A. Nukada, T. Endo, S. Matsuoka, 
“Statistical power modeling of GPU kernels using performance 
counters,” International Green Computing Conference, 2010. 

[5] Growth in data center electricity use 2005 to 2010. 
http://www.analyticspress.com/datacenters.html 

[6] U.S. EPA. Report to congress on server and data center energy 
efficiency. EPA, Tech. Rep., 2007. 

[7] E. Lee, H. Viswanathan, D. Pompili, “VMAP: Proactive thermal-aware 
virtual machine allocation in hpc cloud datacenters,” High Performance 
Computing (HiPC), 2012. 

[8] W. Huang, J. Liu, B. Abali, D. Panda, “A case for high performance 
computing with virtual machines,” International Conference on 
Supercomputing, ICS 2006. 

[9] A. Reuther, P. Michaleas, A. Prout, J. Kepner, “HPC-VMs: Virtual 
machines in high performance computing systems,” IEEE Conference 
on High Performance Extreme Computing (HPEC), 2012. 

[10] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S. Lee, K. Skadron, 
“Rodinia: A benchmark suite for heterogeneous computing," IEEE 
International Symposium on Workload Characterization (IISWC) 2009. 

[11] S. Hong, H. Kim, “An integrated GPU power and performance model,” 
International Symposium on Computer Architecture (ISCA), 2010. 

[12] R. Creasy, “The origin of the VM/370 time-sharing system,” IBM 
Journal of Research and Development, 1981. 

[13] http://ark.intel.com/Products/VirtualizationTechnology 
[14] http://wiki.xen.org/wiki/Xen_VGA_Passthrough 
[15] “Flexible, low power microservers for lightweight scale-out workloads,” 

Intel white paper, 2013. 
[16] R. Bianchini, R. Rajamony, “Power and energy management for server 

systems,” Computer, volume: 37, issue: 11, 2004. 
[17] L. Barroso, U. Hölzle, “The datacenter as a computer: An introduction 

to the design of warehouse-scale machines,” Synthesis Lectures on 
Computer Architecture # 6. 2009. 

[18] http://www.nvidia.co.uk/object/product_tesla_M2050_M2070_uk.html. 
[19] D. Meisner, T. Wenisch, “Peak Power Modeling for Data Center Servers 

with Switched-Mode Power Supplies,” International Symposium on 
Low-Power Electronics and Design (ISLPED), 2010. 

[20] X. Fan, W. Weber, L. Barroso, “Power Provisioning for a Warehouse-
sized Computer,” International symposium on Computer architecture 
(ISCA), 2007. 

[21] R. Nathuji, C. Isci, E. Gorbatov, “Exploiting platform heterogeneity for 
power efficient data centers,” International Conference on Autonomic 
Computing (ICAC), 2007. 

[22] A. Gupta, D. Milojicic, “Evaluation of HPC applications on cloud,” 
Technical Reports, HP Laboratories, HPL-2011-132. 

 


