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ABSTRACT
Modern GPUs have shown promising results in accel-
erating computation intensive and numerical workloads
with limited dynamic data sharing. However, many
real-world applications manifest ample amount of data
sharing among concurrently executing threads. Often data
sharing requires mutual exclusion mechanism to ensure data
integrity in multithreaded environment. Although modern
GPUs provide atomic primitives that can be leveraged
to construct fine-grained locks, lock-based synchronization
requires significant programming e↵orts to achieve func-
tional correctness. The massive multithreading and SIMT
execution paradigm of GPUs further extend the challenges
of GPU locks.

To make applications with dynamic data sharing benefit
from GPU acceleration, we propose a novel software transac-
tional memory system for GPU architectures (GPU-STM).
The major challenges include ensuring good scalability
with respect to the massive multithreading of GPUs, and
preventing livelocks caused by the SIMT execution paradigm
of GPUs. To this end, we propose (1) a hierarchical valida-
tion technique and (2) an encounter-time lock-sorting mech-
anism to deal with the two challenges, respectively. We build
our GPU-STM prototype based on the commercially avail-
able GPU platform and runtime. Our real system based
evaluation shows that GPU-STM outperforms coarse-grain
locks on GPUs by up to 20x.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel programming

General Terms
Algorithms, Design
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1. INTRODUCTION
Recently, the graphics processing unit (GPU) has been

widely adopted for general-purpose computing due to its
massive multithreading capability and cost-e↵ectiveness.
The general-purpose GPU computing is conventionally used
for parallel computation that has limited dynamic data
sharing. Emerging workloads are showing more involved
dynamic data sharing among the threads. The synchroniza-
tions on shared memory locations among individual threads
are typically addressed in two ways. Firstly, programmers
can avoid synchronizations via ad-hoc implementations in
some cases [10, 14, 16]. However, the ad-hoc implementa-
tions are not generic in nature. Secondly, the synchroniza-
tions can be implemented using locks that are constructed
from atomic primitives [9]. However, the lock-based
synchronization requires significant programming e↵orts to
achieve functional correctness and desirable performance.
The problem becomes worse on GPUs due to the concurrent
execution of a large number of threads. Furthermore, the
SIMT execution paradigm of GPUs further extends the chal-
lenges of GPU locks (see more in Section 2.2). Therefore, to
ensure that GPUs benefit a wide range of real-world work-
loads, it is imperative to simplify the concurrent program-
ming paradigm of GPU architectures.

Transactional memory (TM) [13, 11, 21] could be a
promising alternative to simplify such complex concurrency
issues. TM enables atomic operations on an arbitrary set
of memory locations. Transactions eliminate many pitfalls
commonly associated with locks (e.g. deadlock, livelock).
Recent e↵orts have integrated TM into GPUs to simplify
fine-grained synchronization on GPUs [3, 7], yet these
proposals either allow limited concurrency [3], or cannot run
on existing GPUs [7]. Cederman et al. [3] propose two soft-
ware transactional memory (STM) systems (blocking/non-
blocking) on GPUs. However, the STMs proposed can
only support transactional execution at the granularity of
thread blocks (i.e. per-thread-block transactions) instead
of individual threads (i.e. per-thread transactions). As
a result, the STMs allow limited transaction concurrency,
which results in low utilization of the massive multithreading
capability of GPUs. Fung et al. propose KILO TM [7], a
hardware transactional memory (HTM) for GPU architec-
tures. Though the KILO TM supports per-thread transac-
tions, it requires hardware level modification and cannot run
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on existing GPUs.
In this paper, we propose a highly scalable, livelock-free

software transactional memory (STM) system for GPUs,
which supports per-thread transactions. A STM system
that supports per-thread transactions faces new challenges
due to the distinct characteristics of GPUs. The major chal-
lenges include ensuring good scalability of the STM system
with respect to the massive multithreading of GPUs, and
preventing livelocks caused by the SIMT execution paradigm
of GPUs. To address the two challenges, we propose (1)
a hierarchical validation technique and (2) an encounter-
time lock-sorting mechanism, respectively. The hierarchical
validation technique combines timestamp-based validation
with value-based validation to eliminate false conflicts of
timestamp-based validation and high overhead of value-
based validation. When coupled with commit-time locking,
the encounter-time lock-sorting mechanism allows all trans-
actions to grab the locks in the same order to avoid livelocks.

We build our GPU-STM prototype based on the commer-
cially available GPU platform and runtime. Therefore,
it allows programmers to develop GPU applications with
transactional memory without obligations from GPU hard-
ware vendors. The GPU hardware vendors can use this
to gather developer’s feedbacks before committing to build
special hardware for TM.

The rest of the paper is organized as follows. In
Section 2, we briefly introduce the GPU microarchitecture,
and describe the pitfalls of GPU locks in detail. We present
our new GPU-STM algorithms in Sections 3, and evaluate
their e↵ectiveness in Section 4. Section 5 discusses related
works. Section 6 concludes the paper.

2. GPU AND GPU LOCKS

2.1 GPU Microarchitecture
As a general-purpose processor, GPU exposes its shader

cores as SIMD processing engine, which is augmented with
control flow divergence support and memory access opti-
mization mechanism. The shader core is the main SIMD
processing engine and has several functional blocks, such as
integer/floating point ALUs, load/store units, special func-
tional blocks.

Multiple threads (Nvidia warp) execute simultaneously
in a lockstep fashion. On control flow divergences, some
thread lanes are masked o↵. The execution model is
called Single Instruction Multiple Threads (SIMT). At each
scheduling cycle, the fetch/schedule unit chooses an instruc-
tion program counter (PC) based on warp formation and
scheduling policy. Due to the lockstep execution paradigm,
only one instruction is decoded per warp. Based on the type
of the instruction, appropriate functional units are exercised
simultaneously for all the threads in the warp. Load/store
units access the on-chip shared memory or travel through
the on-chip interconnect and memory controller to obtain
data from o↵-chip memory. The load/store units also imple-
ment atomic operations and memory access coalescing mech-
anism. Multiple consecutive accesses to same DRAM row
are coalesced to generate a single memory request.

Execution of general-purpose programs on heterogeneous
GPU/CPU architectures is realized by various application
programming interfaces (API) such as CUDA (Nvidia) [17],
and OpenCL [1]. Using these APIs a programmer can launch
thousands of parallel threads onto GPU device from the host

CPU. Recent GPU architectures supports thread launch
from GPU kernels as well. Several warps form a thread-
block and synchronize either implicitly at the end of execu-
tion or explicitly after a barrier instruction. Thread-blocks
group together to form a thread-grid that executes a GPU
kernel (set of GPU instruction sequence).

2.2 Pitfalls of GPU Locks
Besides the traditional challenges of lock-based synchro-

nization, concurrency bugs can manifest in new manners due
to the SIMT execution paradigm of GPUs.

Consider the situation shown in Scheme #1 of Algo-
rithm 1, here two threads within a warp compete for a
spinlock, which is implemented using the compare-and-
swap (CAS) primitive. One of them acquires the lock,
and waits at the start of critical section for re-convergence,
while the other spins forever; eventually it leads to a dead-
lock. Such deadlock can be avoided using one of the two
methods. Firstly, using Scheme #2 of Algorithm 1, we can
perform serialization within each warp. Unfortunately, this
could lead to extremely low hardware utilization. Secondly,
instead of spinning, threads within each warp diverge on lock
acquisition failures (see Scheme #3 of Algorithm 1). Scheme
#3 executes correctly when each thread acquires a single
lock. However, when each thread acquires multiple locks in
uncertain order, it could result in livelock due to circular
locking phenomenon within individual warps. For example,
consider two threads from the same warp attempting to
acquire two locks in reverse orders. When a thread incurs
locking failure, it releases the locks acquired and retries.
Since warps execute the same instruction in lockstep fashion,
those two threads loop forever. Due to this livelocking issue,
fine-grained locking on GPUs is extremely challenging, even
impossible in some cases.

Algorithm 1 Lock implementations on GPUs

/⇤ Schemes #1 and #3 are originally discussed in [7, 19], and
scheme #2 is adapted from [20] ⇤/
Scheme #1 [7, 19]: spinlocks

1: repeat locked CAS(&lock, 0, 1)
2: until locked = 0
3: critical section . . .
4: lock  0

Scheme #2 [20]: serialization within each warp
5: for i 1 to WARP SIZE do
6: if threadIdx.x%WARP SIZE = i then
7: repeat locked CAS(&lock, 0, 1)
8: until locked = 0
9: critical section . . .
10: lock  0

Scheme #3 [7, 19]: diverging on locking failures
11: done false
12: while done = false do
13: if CAS(&lock, 0, 1) = 0 then
14: critical section . . .
15: lock  0
16: done true

3. A SCALABLE, LIVELOCK-FREE STM
FOR GPUS

GPUs exhibit three major distinct characteristics:
massive multithreading, SIMT execution, and memory



access coalescing. Such characteristics should be considered
when designing a STM system for GPUs. Otherwise, the
STM system would incur poor scalability, livelocks or higher
overhead.

3.1 STM Infrastructure
GPU-STM is a word- and lock-based STM system. In

response to the characteristics of GPUs, GPU-STM inte-
grates three novel ideas: (1) hierarchical validation, (2)
encounter-time lock-sorting and (3) coalesced read-/write-
set organization.
Hierarchical validation – Value-based validation
(VBV) [18, 5] and timestamp-based validation (TBV) [6]
are two common conflict detection strategies used in STM
systems.

VBV records the actual values of locations read by a
transaction and checks them to detect conflicts. To ensure
opacity [8] (which requires transactions observe a consis-
tent view of memory), STM systems that adopt VBV alone
have to perform incremental validation: a transaction has
to validate all past transactional reads after each new read.
This can introduce nontrivial performance overhead. A
single global sequence lock (as used in NOrec [5]) can be
used to filter out unnecessary validations. Combined with
the single lock, VBV can lead to fast systems on CPUs
(e.g. NOrec [5]), since it does not need to access other
shared metadata. However, this scheme cannot scale well on
GPUs, because (1) the single lock is updated frequently by
thousands of transactions, and (2) during commit, memory
updates of all transactions are serialized by the single lock.

Unlike VBV, TBV uses global version locks to manage
the entire memory. Each version lock indicates the version
of a memory stripe. A transaction is invalidated when its
snapshot (the version of memory it accessed) is found out of
date. Comparing with VBV, TBV can reduce the number
of compare instructions and o↵-chip memory tra�c, thus
reduce performance overhead. However, transactions that
access locations managed by the same version lock may
incur false conflicts, which can be avoided by using VBV.
False conflicts can hamper the scalability of TM systems.
Compared with independent thread execution on CPUs, the
lockstep execution of GPUs exacerbates the side e↵ect of
false conflicts. On conflicts some thread lanes have to be
masked o↵, and the transactions of the masked-o↵ threads
would have to be re-executed later. The thread lanes would
have been masked o↵ unnecessarily if the conflicts were false;
this results in low hardware utilization and thus degrades
performance. False conflicts can be reduced by increasing
the number of global version locks. However, the number
of locks should not be too large, otherwise the storage
overhead and the performance impact of metadata-induced
cache pressure would be significant even for a small work-
load.

To ensure scalability, our proposed GPU-STM adopts
hierarchical validation (HV) that combines TBV and VBV.
GPU-STM validates transactions in two scenarios. In
addition to the commit-time validation, it performs post-
validation after each read to ensure the transaction observes
a consistent view of memory. In both scenarios, a transac-
tion first compares the corresponding global version locks
with its snapshot. Only if the snapshot is out of date,
it performs VBV to confirm that the locations accessed is
still consistent. In case of validation failure, the transaction

is aborted. We argue that HV is nearly comparable with
TBV in common cases, and can deal with the corner cases
e�ciently without increasing the number of global version
locks. For applications with small amount of shared data,
the execution path of HV is mostly the same as that of TBV,
and when a large amount of shared data is concurrently
accessed, HV can exploit VBV to avoid false conflicts.
Encounter-time lock-sorting – GPU-STM uses locks to
ensure the isolation of validation and memory updates of
individual transactions during commit. Note that although
the scheme #3 described in Section 2.2 can be used to
acquire the locks, it may incur livelocks. To avoid this, a
common practice is to use the exponential backo↵ strategy.
This strategy requires a transaction that incurs locking
failure to wait for a random, exponentially increasing
delay before retrying, thus can practically avoid livelocks.
However, the exponential backo↵ cannot work on GPUs,
because transactions within the same warp cannot wait for
di↵erent delays due to the lockstep execution.

To address the livelocking issue, we propose encounter-
time lock-sorting coupled with commit-time locking. To be
more specific, each transaction maintains a local lock-log.
On each read/write, a lock is inserted into a corresponding
position in an already-sorted lock-log. The order that the
locks are sorted by is derived from the ordinal relation of
addresses being read or written during transaction execu-
tion. For example, if the size of the global lock-table is 220,
and for a 32-bit address, we use the 2nd-21th of address bits
to identify the lock that manages the address. We sort the
locks by their IDs, so that a global order can be obtained
when acquiring locks. The time complexity of encounter-
time lock-sorting is O(n2) where n is the number of locks it
encountered, because each incoming lock is compared with
the locks that have already existed in the lock-log. There-
fore, lock-sorting would introduce nontrivial overhead for
transactions with large read-/write-sets.

To reduce the overhead, we organize local lock-logs in
order-preserving hash tables. An incoming lock is hashed
into a bucket, and inserted into a corresponding position
afterwards. Eventually, the number of comparison steps is
reduced. Note that a lock is not inserted when the same
lock already exists in the local lock-log. Thereby, dupli-
cation of locks is avoided. When a transaction commits,
it sequentially processes each bucket and the locks within
each bucket. In this way, a global order of lock acquisi-
tion is maintained among all transactions. Hence, livelock-
freedom is ensured, and no backo↵ mechanism is required.
Such livelock-freedom guarantees system-wide progress in
GPU-STM: some thread always makes progress.
Coalesced read-/write-set organization – Similar to
KILO TM [7], GPU-STM leverages the memory access
coalescing mechanism to reduce the overhead of transaction
bookkeeping. The read-/write-sets of all transactions within
each warp are merged in a way so that the transactions can
access consecutive locations. Each thread of a warp executes
a transaction at a time, and uses its index within the warp to
access an independent partition of the merged read-/write-
set. Usually 32 threads form a warp, each thread has a
unique index (from 0 to 31), then entry i of a merged read-
/write-set belongs to thread j if (i mod 32) = j.



3.2 STM Implementation
This section describes the implementation of GPU-STM,

which consists of three components: the STM metadata,
the STM runtime algorithms, and miscellany (i.e. memory
fences, and register checkpoint).

3.2.1 Metadata
GPU-STM comprises two sets of metadata (as listed in

Algorithm 2): the global metadata that is shared among
transactions, and the local metadata that is private to each
transaction. The global lock table is an array of version
locks, each of which is an unsigned integer with the least
significant bit indicating whether a stripe of memory is
locked, and the rest of the bits indicating the version of
a memory stripe. Each transaction maintains a thread local
snapshot of the global clock. Each transaction has its own
read-set and write-set. Read-/write-sets of the transactions
within each warp have coalesced organization as described
in Section 3.1. Each transaction maintains a hash table to
sort the locks encountered during execution. Each entry of
the hash table indexes to a global lock. The lowest two bits
of each entry indicate whether the transaction has written
to, or read from the memory stripe managed by the global
lock. The two bits are referred to as write-bit and read-bit,
respectively.

Algorithm 2 GPU-STM metadata

1: global unsigned g clock
2: global hV ersion, Lock-Biti g lockTab[ ]
3: local unsigned snapshot
4: local hAddress, V aluei reads[ ]
5: local hAddress, V aluei writes[ ]
6: local HashhIndexToGlobalLock,WR,RDi l lockTab[ ]

Using the global version locks, GPU-STM can detect
conflicts between transactional accesses. However, the
conflicts between transactional and non-transactional
accesses cannot be detected, since global version locks of
the STM system do not protect the latter. This mechanism
o↵ers weak isolation [2].

3.2.2 Algorithm
TXBegin – Each transaction begins by reading the global
clock at the point when it starts (line 4 in Algorithm 3)1.
This snapshot value indicates the most recent time when the
transaction was known to be consistent.
TXRead – Read barrier first checks whether the transac-
tion has written to the location (line 22). Here, a bloom filter
for each transaction is used to compress the write-set. If the
location has been written, it returns value from the write-set.
Otherwise, it (1) reads a value from memory (line 24), (2)
logs the address/value pair to read-set for future validation
(line 25), (3) checks for the consistency of all memory reads
performed by the transaction (line 27-33), (4) computes a
global lock index based on the address it reads from, inserts
the index into the local lock-table for commit-time locking,
and sets the read-bit of the local lock (line 34).

We explain the consistency checking in details below. The
read barrier first reads the global version of the location, and
checks whether the location has been locked. Since GPU-
STM adopts commit-time locking, the location can only be
1In the rest of Section 3, all lines specified in brackets indi-
cate lines in Algorithm 3.

locked by a committing transaction. If the location has been
locked, the read barrier waits until the location is released
(line 27-29). Note that, a location locked by a committing
transaction cannot be released until all the memory updates
of the transaction have been committed (see TXCommit
below). This guarantees that all of the memory updates
of the committing transaction can be seen by current trans-
action during consistency checking.

When the location is unlocked, the read barrier compares
the corresponding global version with the local snapshot
(line 31). If the local snapshot is valid, it suggests that the
location has not been written by any other transaction since
the snapshot was verified last time. In this case, consistency
is ensured and no further validation is needed. However,
even if the snapshot is out-of-date, the transaction may
still be consistent, because the locations within the read-
set of the transaction may have not been updated by any
other transaction. To confirm this, the read barrier performs
post-validation (line 32). During post-validation, the read
barrier uses value-based validation (VBV) to check whether
the locations have been updated by any other transaction
(line 9-11). If the value of a location has been changed, the
transaction is aborted.

However, a simple VBV is insu�cient. We also need to
ensure that the locations validated during VBV had not been
updated by other concurrent transactions. Therefore, the
read barrier compares the global versions of the locations
with a particular snapshot (line 13-19) after VBV is passed.
The particular snapshot is obtained before the value of the
first location is checked. If a location is found locked, or
the snapshot is out-of-date (line 17), the VBV is restarted.
This is because, in these cases, a location possibly had been
updated by other concurrent transactions during VBV. If
post-validation is passed, the transaction is verified to be
consistent (at the time of the particular snapshot). Other-
wise, the transaction is aborted.

Since the hardware SIMT stack of GPUs is not manage-
able from software, GPU-STM requires each transaction to
maintain an opacity flag (line 3 and 33) to support trans-
action aborts. Programmers can access the flag and take
measure to abort a running transaction that observes an
inconsistent view of memory. This programming burden can
be eliminated by future compiler or hardware supports.
TXWrite – The write barrier (1) updates the write-set
(line 37), (2) computes a global lock index based on the
address it writes to, inserts the index into the local lock-
table, and sets the write-bit of the local lock (line 38).
TXCommit – A read-only transaction does not require
validation, since it linearizes at the time of the last read
(line 68). Otherwise, a transaction first tries to acquire
the global locks indicated by its local lock-table (line 73).
On locking failure, it retries after transactions within the
same warp finish committing. If the read-bit of a local
lock-entry is set, the transaction also compares the corre-
sponding global version with the local snapshot (line 50). If
the snapshot is out-of-date, it sets a flag to trigger VBV later
(line 51). When the transaction has successfully acquired all
of its locks, it validates read locations using VBV only if any
previous timestamp-based validation fails (line 76). If vali-
dation is passed, the transaction (1) makes its speculative
updates visible by looping through its write-set (line 80-81),
(2) increases the global clock by one (line 83), (3) updates
corresponding global version locks with new global clock,



Algorithm 3 GPU-STM algorithm

1: void TXBegin()
2: reads writes l lockTab ;
3: isOpaque passTBV  true
4: snapshot g clock
5: threadfence()

6: bool PostValidation(Unsigned version)
7: snapshot version
8: loop:
9: for all haddr, vali 2 reads do
10: if ⇤addr 6= val then
11: return false
12: threadfence()
13: for all haddr, vali 2 reads do
14: versionLock  g lockTab[hash(addr)]
15: isLocked (versionLock&1)
16: tmpV er  (versionLock >> 1) . >>: right-shift
17: if (isLocked 6= 0) _ (tmpV er > snapshot) then
18: snapshot tmpV er
19: goto loop
20: return true

21: Value TXRead(Address addr)
22: if haddr, valWritteni 2 writes then
23: return valWritten
24: val ⇤addr
25: reads reads [ {haddr, vali}
26: threadfence()
27: do
28: versionLock  g lockTab[hash(addr)]
29: while {(versionLock&1) 6= 0}
30: version versionLock >> 1
31: if version > snapshot then
32: if ¬PostValidation(version) then
33: isOpaque false . tx should be aborted
34: l lockTab l lockTab [ {hhash(addr), 0, 1i}
35: return val

36: void TXWrite(Address addr, Value val)
37: writes writes [ {haddr, vali}
38: l lockTab l lockTab [ {hhash(addr), 1, 0i}

39: Atomic or(Unsigned ⇤addr, Unsigned val)
40: atomic{old ⇤addr; ⇤addr  old | val; return old;}

41: Atomic inc(Unsigned ⇤addr)
42: atomic{old ⇤addr; ⇤addr  old+ 1; return old;}

43: bool GetLocksAndTBV()
44: for all hi, wr, rdi 2 l lockTab do
45: versionLock  Atomic or(g lockTab[i], 1)
46: if (versionLock&1) 6= 0 then
47: ReleaseLocks()
48: return false
49: if rd = 1 then
50: if (versionLock >> 1) > snapshot then
51: passTBV  false
52: return true

53: void ReleaseLocks()
54: for all global lock i acquired do
55: g lockTab[i] g lockTab[i]� 1

56: void ReleaseAndUpdateLocks(Unsigned version)
57: for all hi, wr, rdi 2 l lockTab do
58: if wr = 1 then
59: g lockTab[i] version << 1 . <<: left shift
60: else
61: g lockTab[i] g lockTab[i]� 1

62: bool VBV()
63: for all haddr, vali 2 reads do
64: if ⇤addr 6= val then
65: return false
66: return true

67: bool TXCommit()
68: if read-only transaction then
69: return true
70: loop:
71: if ¬VBV() then . optional, to reduce lock contention
72: return false
73: if ¬GetLocksAndTBV() then
74: goto loop
75: if passTBV 6= true then
76: if ¬VBV() then
77: ReleaseLocks()
78: return false
79: threadfence()
80: for all haddr, vali 2 writes do
81: ⇤addr  val
82: threadfence()
83: version Atomic inc(g clock) + 1
84: ReleaseAndUpdateLocks(version)
85: return true

and releases the locks acquired (line 84). Otherwise, it
releases the previously locks acquired and aborts (line 77-
78).

Unlike CPU STM systems where only the locations being
written to is locked during commit, the GPU-STM system
locks all read/write locations of the transaction before vali-
dation. Otherwise, some transactions can never succeed due
to lockstep execution. For example, consider the following
situation in which locations being read are left unlocked
during commit. Transactions T1 and T2 within the same
warp share two locations X and Y. T1 reads Y and updates
X, while T2 reads X and updates Y . Since T1 and T2
are within the same warp, they execute in lockstep fashion.
During commit, T1 and T2 first lock their write accesses (X
for T1, and Y for T2 ), respectively. Afterwards, T1 and T2
validate their read accesses (Y for T1, X for T2 ), and find
that their read accesses are locked by other transactions. As

a result, T1 and T2 both abort and restart later, and can
never commit.

3.2.3 Miscellany
Memory fences – STM systems in weak memory models
(such as GPU memory model) typically need fences to
ensure that subsequent accesses are not hoisted [22]. CUDA
provides threadfence [17], which stalls current thread
until its prior shared memory accesses (global memory
accesses) are visible to all threads in the thread block (all
threads in the kernel). The fences are used in GPU-STM
to ensure the order between accesses to metadata and main
memory. In TXBegin, each transaction reads the global
clock at beginning time. A fence is used to order such read
prior to transaction execution (line 5). In TXRead, two
fences are used. The first one is set in between the program
data access and consistency checking (line 26). The second



is set in between value-based validation and version checking
in PostV alidation (line 12). In TXCommit, two fences are
put before and after memory updates of write-set (line 79
and 82), respectively.
Register checkpoint – GPU-STM does not checkpoint
registers currently. Similar to KILO TM [7], we observe that
the original values in registers are rarely used when a trans-
action restarts and do not need to be restored. Only one of
our evaluation workload requires restoring one register for
each transaction. Other evaluation workloads do not require
any register restoration upon transaction aborts. However,
if necessary, register restoration can be realized as follows:
(1) programmers can insert code to checkpoint and restore
register values if a small number of registers need to be
restored; or (2) a compiler can determine which registers
are both read and written within a transaction and insert
code to checkpoint and restore them.

3.3 STM Correctness
Opacity [8] is a crucial correctness criterion for STM

systems without sandboxing [4]. It defines a form of
strict serializability in which all transactions would appear
to occur in some global total order. As stated in [8],
opacity captures the following requirements: (1) all oper-
ations performed by every committed transaction appear
as if they occurred at some single, indivisible point, (2)
memory updates made by aborted transactions are not
visible to other transactions, and (3) every transaction
always observes a consistent view of memory during execu-
tion.

We briefly explain how GPU-STM follows such opacity
requirements. (1) In GPU-STM, a committed transaction
appears as if it occurred at the point when the global clock
was increased (line 83). The indivisibility of committed
transactions is ensured by using locks: a transaction locks
all locations involved before validation and memory updates
during commit. (2) In GPU-STM, aborted transactions can
never be visible due to lazy updates. (3) GPU-STM checks
for consistency (line 27-33) after each transactional read to
ensure that every transaction always observe a consistent
view of memory.

4. EVALUATION
In this section, we evaluate the performance of GPU-STM

from di↵erent perspectives. First, we present the overall
performance results of five workloads with di↵erent charac-
teristics. Second, we compare the proposed hierarchical vali-
dation (HV) technique and the timestamp-based validation
(TBV) technique in more details using a micro-benchmark.
Finally, we evaluate the overhead of STM system by exam-
ining the execution time breakdown of a single-thread.

4.1 Experimental Setup
Three micro-benchmarks and three workloads ported

from STAMP benchmarks [15] are used in the evalua-
tion. The workloads together exhibit comprehensive trans-
actional characteristics, as presented in Table 1. The
micro-benchmarks used are random array (RA), hashtable
(HT), and EigenBench (EB) [12]. In RA, each transac-
tion randomly accesses multiple locations of a shared array.
In HT, each transaction inserts multiple elements into a
shared hash table. The EB micro-benchmark is used only
for HV and TBV comparison due to its reconfigurability.

The STAMP workloads used are labyrinth (LB), genome
(GN), and k-means (KM). We select these three STAMP
workloads because they are suited for GPU computing. The
data structures of the three workloads can be easily replaced
with arrays, which is usually required for GPU computing.

We implement GPU-STM on top of CUDA [17] runtime
on a Nvidia 1.15 GHz C2070 Fermi GPU with 14 streaming
multiprocessors (448 processing elements). The local and
global metadata of GPU-STM are both stored in the global
memory (a form of o↵-chip memory in Nvidia’s term). The
local metadata is cached at the L1 and L2 levels. The global
metadata is only cached at the L2 level, because the L1
cache on Fermi GPUs is not coherent and cannot be used
for caching globally shared data. We selectively bypass the
L1 cache by using “volatile” [17]. Though implemented on
the Nvidia GPU and runtime, the design of GPU-STM is
relatively general and applies to any similar GPU architec-
ture. We transactify applications using GPU-STM runtime
APIs. Figure 1 presents a transactional CPU-host/GPU-
kernel code example using GPU-STM. Compiler support can
further reduce the complexity of GPU-STM programming:
(1) log operations and opacity checking can be automati-
cally inserted, and (2) explicit calls to TXRead/Write can
be replaced by simple atomic annotations.

4.2 Overall Performance Comparison
We implement four basic STM variants that adopt NOrec-

like [5] value-based validation (STM-VBV), TBV with
encounter-time lock-sorting (STM-TBV-Sorting), and HV
with encounter-time lock-sorting (STM-HV-Sorting) and
with backo↵ (STM-HV-Backo↵), respectively. Both HV and
TBV use 1M global version locks. STM-VBV does not need
to prevent livelocks, since only a single global lock is used.
STM-HV-Backo↵ adopts a backo↵ mechanism specific to
GPU to prevent livelocks. When lock acquisition is required,
transactions within a warp try to acquire locks in parallel
in the first attempt. Those who incur locking failures try to
acquire locks again sequentially, while the others are waiting
(inactive). Transactions that have acquired locks success-
fully perform validation and memory updates in parallel
before the failed transactions retry. Livelocking within a
warp is avoided by sequentially locking in the second step.
However, such sequentially locking could cause a bottleneck
during commit and thus degrade performance.

In addition, we implement an optimized STM variant
(STM-Optimized), which adaptively makes a selection
between HV and TBV at runtime according to the amount
of shared data of a STM program. STM-Optimized selects
HV when the amount of shared data is larger than that of
global version locks. Otherwise, it selects TBV, since false
conflicts are rare and value-based validation is unnecessary
in this case. For GPU programs, usually the amount of
shared data can be easily obtained by counting the elements
of arrays before transaction kernels start. To prevent live-
locks, STM-Optimized adopts encounter-time lock-sorting.

We also compare the STM variants with the existing
blocking GPU STM [3] (STM-EGPGV). The non-blocking
one exhibits similar performance, as the limited concur-
rency poses as major obstacle. We do not compare GPU-
STM with KILO TM [7], because KILO TM cannot run
on existing GPUs. The STM implementations for CPUs
(e.g. NOrec [5], JudoSTM [18] and TL2 [6]) are not used
for comparison as they cannot run on GPUs. However, they



Table 1: Application characteristics.a

Name Shared Data RD/TX WR/TX TX/Kernel TX Time Conflicts

RA 8M 16 16 1M High Low
HT 256K 8 8 1M High Medium
GNb 16K/1M 1 1 4M/1M Medium/High Low/Medium
LB 1.75M 352 352 512 Low Low
KM 2K 32 32 64K Medium High
EB 1M-64M 32 32 1M High High-Low

a Shared data: number of data shared among TXs; RD/TX, WR/TX: number of shared data read,
written by each TX; TX/kernel: number of TXs per kernel; TX time: proportion of time spent in
TXs; conflicts: the probability of conflict.
b GN has two transaction kernels.

/*This example implements the random array micro-benchmark, each thread executes a transaction. The STM code is marked in bold
font.*/

host void randomarray () { //CPU-host code
int *d array; cudaMalloc((void **)&d array, SIZE * sizeof(int)); // allocate global memory on the GPU
STM STARTUP(); // allocate memory space for and initialize global metadata
randomarray core <<<BLOCKS, BLOCK SIZE>>>(d array); //call a GPU kernel
STM SHUTDOWN(); //free global metadata
cudaFree(d array); // free global memory on the GPU

}

global void randomarray core (int *array) { //GPU-kernel code
//allocate memory for a warp of transactions, executed by a single thread within each warp
Warp *warp = STM NEW WARP();
done = false;
while(!done){

TXBegin(warp); //each thread initializes a transaction
for(int i = 1; i < ACTIONS PER TX; i++){

action = generateAction(); index = generateAddr(); //generate random action and address
if(action == do read) TXRead(&array[index], warp);
//if opacity during transaction execution is required, check the opaque flag
if(!warp->isOpaque[threadIdxInWarp])break;
if(action == do write) TXWrite(&array[index], val, warp);

}
done = TXCommit(warp); //each thread commits a transaction

}
STM FREE WARP(warp);

}
Figure 1: A code example using GPU-STM.

can be roughly represented by STM-VBV, STM-HV-Backo↵
and STM-TBV-Sorting (though lock-sorting is not used in
CPU STMs). The STM performance is measured in terms of
the speedup on GPU transaction kernels over coarse-grained
locking (CGL), which serializes critical sections with a single
lock, on GPUs. Fine-grained locking is not implemented due
to the complexity and even infeasibility (for RA, HT, and
LB).

Figure 2 presents an overview of STM performance across
the five workloads. Among all STM implementations, STM-
Optimized, which adaptively selects HV or TBV, and adopts
encounter-time lock-sorting, is either the fastest or ties to the
fastest. The performance of STM-EGPGV is constrained
by its limited concurrency. STM-VBV yields undesirable
performance on workloads with a large number of transac-
tions (e.g. RA, HT, GN, and KM) due to its limited scala-
bility. STM-TBV-Sorting and STM-HV (both Sorting and
Backo↵) exhibit noticeable speedup over CGL on workloads
with modest conflicts among transactions (e.g. RA, HT,
GN, and LB). KM does not benefit from STM parallelization
due to high conflict rate, which is caused by relatively small
amount of shared data competed by many transactions.
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Figure 2: Performance comparison between STM variants
and coarse-grained locking on GPU.

Moreover, the benefit of STM parallelization varies with the
proportion of time spent in transactions. Workloads with
higher proportion of transaction time exhibit higher speedup
(e.g. RA, HT, and GN). In addition, STM parallelization
is also crucial to the workloads with less transaction time
(e.g. LB), since critical sections would have to be serialized
otherwise.
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Figure 3: The scalability of STM variants.
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Figure 4: Comparison between HV and TBV with di↵erent number of global version locks.

Table 2: Launch configurations of workloads when STM-
Optimized achieves optimal performance.

RA HT GN-1, GN-2 LB KM

Thread-blocks 256 256 256, 16 512 64
Threads per Block 256 256 256, 64 256 4

Furthermore, STM-HV-Sorting outperforms STM-TBV-
Sorting on workloads with relatively large amount of shared
data (e.g. RA and LB). On these workloads, the amount of
shared data (8M for RA, 1.75M for LB) is larger than that of
global version locks (1M). This insinuates the TBV imple-
mented by STM-TBV-Sorting su↵ers from false conflicts.
For rest of the workloads, STM-HV-Sorting incurs a small
slowdown compared with STM-TBV-Sorting due to unnec-
essary value-based validation. Compared with the above
two variants, STM-Optimized yields better overall perfor-

mance due to its adaptability. When the amount of shared
data is large, STM-Optimized is comparable with STM-HV-
Sorting. Otherwise, STM-Optimized is comparable with
STM-TBV-Sorting. STM-HV-Sorting outperforms STM-
HV-Backo↵ on workloads with low conflict rates except LB.
LB does not benefit from lock-sorting, since there is only one
thread that executes transactional code within each thread
block, and sorting cannot reduce inactive thread lanes. Also
KM does not benefit from lock-sorting, since the inactive
thread lanes poses as major obstacle.Therefore, adaptive
selection between lock sorting and backo↵ may yield better
overall performance. We leave this as future work.

Table 2 presents the launch configurations of the work-
loads when STM-Optimized achieves the optimal perfor-
mance. GN has two transaction kernels, and KM cannot
fully utilize the SIMT lanes due to high conflict rate.

Figure 3 presents the scalability of STM implementa-
tions in the same workload configurations. Note that we



did not evaluate CGL as it does not scale. STM-EGPGV
crashes at relatively small numbers of threads because it
does not support per-thread transactions. As expected,
STM-VBV does not scale well due to contention on the
single global lock it uses. The rest of the STM variants
scale quite well, since they use a relatively large number of
global locks. Note that the performance does not improve
consistently with the increasing number of threads. This is
due to the limitation of the hardware resources of GPUs.
Meanwhile, the increasing number of threads can result in
more conflicts among transactions thus higher abort rates.
This is a tradeo↵ between concurrency and e�ciency, and
this tradeo↵ encourages identifying the optimal number of
concurrent threads. Therefore, a transaction scheduler that
dynamically adjusts concurrency would simplify the opti-
mization of GPU-STM programs. We leave this adaptive
transactional scheduler as our future work.

4.3 Comparison between HV and TBV
In this section, we compare HV and TBV in more

details from scalability perspective. The evaluation work-
load used is EigenBench (EB) [12] micro-benchmark. Due
to its reconfigurability, this micro-benchmark allows us to
compare the two validation techniques under di↵erent condi-
tions (i.e., the amount of shared data, global version locks
and concurrent threads). The amount of shared data in our
experiments varies from 1M to 64M.

Figure 4 shows a comparison between HV and TBV
with di↵erent number of global version locks (from 1M to
64M). HV and TBV yield comparable performance when
the number of concurrent threads is small (less than 1K),
because the execution path of HV is mostly the same as that
of TBV when the conflict is low. HV and TBV also yield
comparable performance when the amount of shared data is
small (as shown in Figure 4(a)), because exploiting value-
based validation (VBV) cannot reduce conflicts. When the
amount of shared data is large (as shown in Figures 4(b)-
(d)), TBV benefits significantly from increasing the number
of global version locks due to the reduced conflicts. Note
that HV also benefit from increasing the number of global
version locks due to lesser lock contention. More impor-
tantly, when many threads concurrently access a large
amount of shared data, HV can yield good performance
with relatively smaller number of global version locks. As
shown in Figures 4(b)-(d), HV yields near optimal perfor-
mance with 4M locks, since it can exploit VBV to reduce
false conflicts.

As shown in Figures 4(b)-(d), HV can reduce the trans-
action abort rates significantly even with a small number
of global version locks. For the EB micro-benchmark, the
performance does not benefit significantly from the lower
abort rates. Since the threads access global memory most
of the time, the long latency of memory accesses hides the
benefit of the lower abort rates. However, for real-world
workloads, the lower abort rates may yield good perfor-
mance. Interestingly, as shown in Figure 4(a)-(b), even
without false conflicts, TBV results in higher abort rates
than HV when they use the same number of global version
locks. The reasons are: (1) to reduce lock contention, a
transaction is aborted after several lock-acquisition attempts
in practical implementations; and (2) HV can filter out
conflicts using VBV before acquiring locks to reduce lock
contention.
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Figure 5: Execution time breakdown of a single-thread,
which includes: native-code execution, transaction initial-
ization, bu↵ering, consistency checking, acquiring/releasing
locks, committing, and aborted transactions.

4.4 Execution Time Breakdown
This section evaluates the overhead of GPU-STM by

examining the execution time breakdown of a single-thread
in STM-Optimized, as shown in Figure 5. In the micro-
benchmarks (RA, HT and EB), almost all operations of the
GPU kernels are synthetic transactional operations. There-
fore, the breakdown of these benchmarks cannot tell the
overhead of GPU-STM, and is not presented. The second
kernel of GN (GN-2) incurs significant STM overhead, since
it spends a large proportion of time in transactions, and
transactional reads and writes account for a large proportion
of the transactions. Therefore, the STM overhead (espe-
cially transaction initialization overhead) of GN-2 is di�-
cult to be amortized by the native code execution. Work-
loads with larger read- and write-sets (e.g. LB and KM)
incur higher bu↵ering overhead. Note that the single-thread
overhead of GPU-STM can be amortized by the additional
scalability it provides. For instance, GN-2 exhibits ⇠20x
speedup even with significant overhead. However, workloads
with limited inherent scalability (e.g. KM) are not suited to
GPU-STM, since a very high proportion of transactions are
aborted due to high conflict rates.

5. RELATED WORKS
Cederman et al. [3] proposed two STMs on GPUs. The

STMs do not incur livelocking issue, because they only
support a single transaction per thread block. However, they
are not scalable and only allow limited concurrency. Fung et
al. proposed KILO TM [7], a HTM for GPU architectures.
Similar to GPU-STM, KILO TM also supports per-thread
transactions, employs value-based conflict detection, and
ensures logs are coalesced. Unlike GPU-STM, KILO TM
cannot be used on existing GPUs, because it requires hard-
ware level modification. Moreover, KILO TM uses several
commit units to detect conflicts and order memory updates.
The concurrency in commit phase is constrained by the
number and capacities of commit units. On the contrary,
GPU-STM allows much higher concurrency by using a large
number of global version locks. Timestamp-based valida-
tion (TBV) was used by TL2 [6], and value-based validation
(VBV) was used by JudoSTM [18] and NOrec STM [5]. To
ensure the scalability of GPU-STM, we combine TBV and
VBV, and propose hierarchical validation (HV), where the
interaction between TBV and VBV is carefully designed.



GPU-STM has been presented in our prior work [23]. This
paper extends the prior work mainly in two ways. First, we
propose a new GPU-STM implementation, which adaptively
makes a selection between HV and TBV at runtime based
on the amount of shared data of a STM program. Second,
we present detailed description and analysis of GPU-STM
algorithm, and perform comprehensive evaluation.

6. CONCLUSION
Simplified fine-grained synchronization is crucial for the

evolution of the GPU as a massive dynamic data-sharing
enabled general-purpose computing architecture. To this
end, we propose GPU-STM, a novel STM system for GPU
architectures. The proposed STM system can scale to thou-
sands of concurrent threads and ensure livelock-freedom.
We build GPU-STM infrastructure on commercially avail-
able GPUs and runtime. Our prototype-based evaluation
shows that dynamic data sharing among individual threads
on GPUs can be e�ciently expressed with GPU-STM, and
our proposed technique outperforms coarse-grain locks on
GPUs significantly.
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