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Abstract—To make applications with dynamic data sharing among threads benefit from GPU acceleration, we propose a novel software
transactional memory system for GPU architectures (GPU-STM). The major challenges include ensuring good scalability with respect
to the massively multithreading of GPUs, and preventing livelocks caused by the SIMT execution paradigm of GPUs. To this end, we
propose (1) a hierarchical validation technique and (2) an encounter-time lock-sorting mechanism to deal with the two challenges,
respectively. Evaluation shows that GPU-STM outperforms coarse-grain locks on GPUs by up to 20x.

Index Terms—Multicore Processors, Parallel Programming, Run-time Environments, SIMD Processors.
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1 INTRODUCTION

THE increasing computing requirement adds more general-
purpose applications to the arena of GPU computing,

including applications with dynamic data sharing. The syn-
chronizations on shared memory locations among individual
threads are typically implemented using locks constructed
from atomic primitives. However, the lock-based synchroniza-
tion requires a great amount of programming efforts to achieve
functional correctness and desirable performance. Further-
more, the SIMT execution paradigm of GPUs exacerbates the
challenges of GPU locks (see more in Section 2.2). Therefore,
to ensure that GPUs benefit a wide range of real-world work-
loads, it is imperative to simplify the concurrent programming
paradigm of GPU architectures.

Transactional memory (TM) [6] enables atomic operations on
an arbitrary set of memory locations. Code that must execute
atomically and in isolation is protected by TM infrastructures.
Transactions eliminate many pitfalls commonly associated with
locks (e.g. deadlock, livelock). Recent efforts have integrated
TM into GPUs to simplify fine-grained synchronization on
GPUs [1], [4], yet these proposals either allow limited concur-
rency [1], or require hardware level modification and cannot
run on existing GPUs [4]. In this paper, we propose a highly
scalable, livelock-free software transactional memory (STM)
system for GPUs.

2 GPU AND GPU LOCKS

2.1 GPU Microarchitecture

General-purpose GPU exposes its shader cores as SIMD pro-
cessing engine, which is augmented with control flow diver-
gence support and memory access optimization mechanism.
The shader core has several functional blocks, such as inte-
ger/floating point ALUs, load/store units, special function-
al blocks, and atomic units. Multiple threads (Nvidia warp)
execute simultaneously in lockstep fashion. On control flow
divergences, some thread lanes are masked off. The execu-
tion paradigm is called SIMT. Every scheduling cycle, the
fetch/schedule unit chooses an instruction PC based on warp
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formation and scheduling policy. Due to lockstep execution
paradigm, only one instruction is decoded per warp. Based
on the type of the instruction, appropriate functional blocks
are executed simultaneously for all the threads in the warp.
Load/store units access the on-chip shared memory or travel
through the on-chip interconnect and memory controller to
get data from off-chip memory. Load/store units also imple-
ment atomic read-modify-write operations and memory access
coalescing mechanism. Multiple consecutive accesses to same
DRAM row are coalesced to generate a single memory request.

2.2 Pitfalls of GPU Locks
Besides the traditional challenges of lock-based synchroniza-
tion, concurrency bugs can manifest in new manners due to
the SIMT execution paradigm of GPUs.

Consider the situation in Scheme #1 of Fig. 1, here two
threads within a warp compete for a spinlock, which is imple-
mented using the compare-and-swap (CAS) primitive. One of
them acquires the lock, and waits at the start of critical section
for re-convergence, while the other spins forever; eventually it
leads to a deadlock. Such deadlock can be avoided using one of
the two methods. Firstly, using Scheme #2 of Fig. 1, we can per-
form serialization within each warp. Unfortunately, this could
lead to extremely low hardware utilization. Secondly, instead of
spinning, threads within each warp diverge on lock acquisition
failures (see Scheme #3 of Fig. 1). Scheme #3 executes correctly
when each thread acquires a single lock. However, when each
thread acquires multiple locks in uncertain order, it results in
livelock due to circular locking phenomenon within individual
warps. For example, in a case that two threads from the same
warp attempt to acquire two locks in reverse orders, when a
thread incurs locking failure, it releases the locks acquired and
retries. Since warps execute the same instruction in lockstep
fashion, those two threads loop forever. Due to this livelocking
issue, fine-grained locking on GPUs is extremely challenging,
even impossible in some cases.

3 A SCALABLE, LIVELOCK-FREE STM FOR GPUS

Massively multithreading of GPUs requires the scalability of
proposed STM system, which should support concurrently
execution and committing of 1000s of transactions. Also, the
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/*Schemes #1 and #3 are originally discussed in [4], [9], and
scheme #2 is adapted from [10]*/
Scheme #1 [4], [9]: spinlocks
1. while (CAS(&lock,0,1)==1), spin
2. //critical section...
3. CAS(&lock,1,0)

Scheme #2 [10]: serialization within warps
1. for (int i=0; i<WARP SIZE; i++)
2. if (threadIdx.x%WARP SIZE == i)
3. while (CAS(&lock,0,1)==1), spin
4. //critical section...
5. CAS(&lock,1,0)

Scheme #3 [4], [9]: diverging on locking failures
1. done = false
2. while (done==false)
3. if (CAS(&lock,0,1)==0)
4. //critical section...
5. CAS(&lock,1,0), done = true

Fig. 1: Lock implementations on GPUs

characteristics of GPUs (i.e. SIMT execution, and memory ac-
cess coalescing) should be considered. Otherwise, the proposed
STM would incur incorrect execution or higher overhead.

3.1 STM Infrastructure

GPU-STM is a word- and lock-based STM, which integrates
three novel ideas: (1) hierarchical validation; (2) encounter-time
lock-sorting; and (3) coalesced read/write buffers.

Hierarchical validation – Value-based validation (VBV) and
timestamp-based validation (TBV) are two common conflict
detection strategies used in STM systems.

VBV records the actual values of locations read by a trans-
action and checks these to detect conflicts. To ensure opaci-
ty [5], STM systems that adopt VBV alone have to validate
incrementally after each transactional read. This can introduce
nontrivial performance overhead. A single global sequence
lock can be used to filter out unnecessary validations. Together
with the single lock, VBV can lead to fast systems on CPUs
(e.g. NOrec [2]) since it does not need to access other shared
metadata. However, this scheme cannot scale well on GPUs,
because (1) the lock would be updated frequently by 1000s of
transactions, and (2) during committing, memory updates of
all transactions are serialized by the lock.

Unlike VBV, TBV uses global version locks to manage the
entire memory. Each version lock indicates the version of a
memory stripe. A transaction is invalidated when its snapshot
(the version of memory it accessed) is found out of date.
Comparing with VBV, TBV can result in less number of com-
pare instructions and less off-chip memory traffic. However,
transactions that access locations managed by the same lock
may incur false conflicts, which can be avoided by using VBV.
False conflicts can hamper the scalability of TM systems. The
SIMT execution paradigm of GPUs exacerbates the side effect
of false conflicts. On conflicts some thread lanes have to be
masked off. The thread lanes would have been masked off
unnecessarily if the conflicts were false; this results in low
hardware utilization and thus degrades performance. False
conflicts can be reduced by increasing the number of global
version locks. However, the number of global version locks
should not be too large, otherwise the storage overhead and
the performance impact of metadata-induced cache pressure
would be significant even for a small workload.

To ensure scalability, GPU-STM adopts hierarchical valida-
tion (HV) that combines TBV and VBV. GPU-STM validates

transactions in two scenarios. In addition to the commit-time
validation, it performs post-validation after each read to ensure
opacity. In both scenarios, a transaction first compares the
corresponding global version locks with its snapshot. Only if
the snapshot is out of date, it performs VBV to confirm that
the memory locations accessed is still consistent. In case of
validation failure, the transaction is aborted. We argue that HV
is comparable with TBV in common cases, and can deal with
corner cases efficiently without increasing the number of global
locks accordingly. Because for applications with small amount
of shared data, the execution path of HV is mostly the same as
that of TBV, and HV can exploit VBV to avoid false conflicts
when a large amount of shared data is concurrently accessed.

Encounter-time lock-sorting – GPU-STM uses locks to en-
sure isolation of validation and memory updates of individual
transactions. Scheme #3 described in Section 2.2 is used to ac-
quire the locks. However, this scheme may incur livelocks. The
typical solution is exponential backoff strategy. When applying
to GPU-STM, it requires a transaction that incurs locking failure
to wait for a random, exponentially increasing delay before
retrying, thus can practically avoid livelocks. However, this
strategy along with the SIMT execution can result in a lot of
inactive thread lanes on GPUs.

To address the livelocking issue, we propose encounter-time
lock-sorting which is coupled with commit-time locking. Each
transaction maintains a local lock-log. On each read/write, a
lock is inserted into the correct position in an already sorted
lock-log. The time complexity of lock-sorting is O(n2), where n
is the number of locks it encountered. Thus, lock-sorting would
introduce non-trivial overhead. To reduce the overhead, we
organize local lock-logs in order-preserving hash tables. The
order that the locks are sorted by is derived from the ordinal
relation of addresses being read or written during transaction
execution. An incoming lock is hashed into a bucket, and
inserted into a correct position afterwards. Eventually, the
number of comparison steps is reduced. Here the well-known
insertion sort algorithm is used for lock-sorting within each
bucket. When a transaction commits, it sequentially processes
each bucket and each lock within each bucket. Thereby, a global
order of lock acquisition is maintained among all transactions,
and livelock-freedom is ensured.

Coalesced read/write buffers – GPU-STM leverages the
memory access coalescing mechanism to reduce the overhead
of transaction bookkeeping. The read-/write-sets of transac-
tions within the same warp are merged in a way so that the
transactions within a warp can access consecutive locations.
Each thread of a warp executes a transaction at a time, and each
thread uses its index within the warp to access an independent
partition of the merged read-/write-set. Usually 32 threads
form a warp, each thread has a unique index (from 0 to 31),
then entry i of a merged read-/write-set belongs to thread j if
(i mod 32) = j. However, accesses to the local lock-logs are not
coalesced. The penalty of uncoalesced memory accesses can be
reduced by multi-level caches of GPUs.

3.2 STM Implementation

This section describes the implementation of GPU-STM, which
consists of three components: the STM metadata, the STM
runtime algorithms, and the memory fences used.

Metadata – GPU-STM comprises two sets of metadata (as
listed in Fig. 2): global metadata shared among transactions,
and local metadata private to each transaction. The global lock
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global unsigned global clock
global <Version, Lock-Bit> global locktable[]
local unsigned snapshot
local <Address, Value> reads[]
local <Address, Value> writes[]
local Hash<IndexToGlobalLock, WR-Bit, RD-Bit> local locktable[]

Fig. 2: GPU-STM metadata

table is an array of version locks, each of which is an unsigned
integer with the least significant bit indicating whether a stripe
of memory is locked, and with the rest bits indicate the version
of a memory stripe. Each transaction maintains a thread local
snapshot of the global clock. Each transaction has its own
read-set and write-set. Read-/write-sets of transactions within
the same warp have coalesced organization. Each transaction
maintains a hash table to sort the locks it encountered during
execution. Each entry of a local lock-table indexes to a global
lock. The lowest two bits of each entry indicate whether the
transaction has written to, or read from the memory stripe
managed by the global lock, thus the two bits are referred to
as write-bit and read-bit, respectively.

TXBegin – Each transaction begins by reading the global
clock. This snapshot value indicates the most recent time when
the transaction was known to be consistent.

TXRead – Read barrier first checks whether the transaction
has written the location. If the location has been written, it
returns value from write-set. Otherwise, it (1) reads a value
from memory, (2) logs the address/value pair to read-set for
future validation, (3) checks for opacity, (4) computes a global
lock index based on the address it reads from, (5) inserts the
index into the local lock-table for commit-time locking, and (6)
sets the read-bit of the local lock. For opacity checking, the
read barrier compares the corresponding global version with
the local snapshot. If the snapshot is out of date, it performs
value-based validation (VBV) to confirm that the transaction is
still consistent. If validation is passed, it updates the snapshot
with the global version. Otherwise, the transaction is aborted.

TXWrite – The write barrier (1) updates the redo-logs with
the value written, (2) computes a global lock index based on
the address it writes to, (3) inserts the index into the local lock-
table, and (4) sets the write-bit of the local lock.

TXCommit – A read-only transaction does not require vali-
dation since it linearizes at the time of the last read. Otherwise,
a transaction first tries to acquire the global locks indicat-
ed by its local lock-table. On locking failure, it retries after
transactions within the same warp finish committing. If the
read-bit of a local lock is set, the transaction compares the
corresponding global version with the local snapshot. If the
snapshot is out of date, it sets a flag to trigger VBV later.
When the transaction has successfully acquired all of its locks,
it validates read locations using VBV only if any previous
timestamp-based validation fails. If validation is passed, the
transaction (1) makes its speculative updates visible by looping
through its write-set, (2) increases the global clock by one, (3)
updates corresponding global version locks with new global
clock, and (4) releases the locks acquired. Otherwise, it releases
the locks acquired and aborts.

Memory fences – STM systems typically need fences in
weak memory models (e.g. GPU memory model) to ensure
that subsequent accesses are not hoisted [11]. CUDA provides

threadfence that can stall current thread until its prior
global memory and shared memory accesses complete. The
fences are used in three runtime functions (TXBegin, TXRead

TABLE 1: Application Characteristics.a

Name Shared
Data

RD
/TX

WR
/TX

TX
/Kernel

TX
Time Conflicts

RA 8M 16 16 1M High Low
HT 256K 8 8 1M High Medium

GNb 16K
/1M 1 1 4M

/1M
Medium
/High

Low
/Medium

LB 1.75M 352 352 512 Low Low
KM 2K 32 32 64K Medium High

a Shared data: number of data shared among TXs; RD/TX, WR/TX:
number of shared data read, written by each TX; TX/kernel: number
of TXs per kernel; TX time: proportion of time spent in TXs; conflicts:
the probability of conflict.
b GN has two transaction kernels.

and TXCommit) of GPU-STM to ensure the order between
accesses to metadata and main memory. In TXBegin, each
transaction reads the global clock at beginning time. A fence
is used to order such read prior to transaction execution. In
TXRead, a fence is put between the access of program data
and opacity checking. In TXCommit, two fences are put before
and after memory updates of write-set, respectively.

3.3 Semantics
GPU-STM provides weak isolation, where transactions are
isolated from other transactions rather than both other trans-
actions and concurrent non-transactional accesses.

Because the hardware SIMT stack of GPUs is not manageable
from software, GPU-STM requires each transaction to maintain
a failure-flag to support transaction aborts. When opacity is
required, programmers should access the flag and take mea-
sure to abort a transaction. This programming burden can be
eliminated by future compiler or hardware supports.

4 EVALUATION

In this section, we present a preliminary performance evalua-
tion of GPU-STM. We implement GPU-STM on top of CUDA
runtime on an Nvidia 14-shader 1.15 GHz C2070 Fermi GPU,
and transactify applications using GPU-STM runtime APIs.
The local metadata and global metadata of GPU-STM are both
stored in the global memory. The local metadata is cached
at the L1 and L2 levels; while the global metadata is only
cached at the L2 level, since the L1 cache on Fermi GPUs
is not coherent. Two micro-benchmarks and three workloads
ported from STAMP benchmarks [7] are used in the evalua-
tion. In randomarray (RA) micro-benchmark, each transaction
randomly accesses multiple locations of a shared array. In
hashtable (HT) micro-benchmark, each transaction inserts mul-
tiple elements into a shared hash table. The STAMP workloads
used are labyrinth (LB), genome (GN), and k-means (KM).
Table 1 presents the characteristics of the workloads.

4.1 Performance Comparison
We implement four STM variants which adopt NOrec-alike
value-based validation (STM-VBV), timestamp-based valida-
tion (STM-TBV), and hierarchical validation with encounter-
time lock-sorting (STM-HV-Sorting) and with backoff (STM-
HV-Backoff), respectively. STM-HV-Backoff adopts a backoff
scheme specific to GPU to reduce inactive thread lanes caused
by exponential backoff. When lock acquisition is required,
transactions within a warp try to acquire locks in parallel in the
first attempt. Those who incur locking failures try to acquire
locks again sequentially, while the others are waiting. Transac-
tions that have acquired locks successfully perform validation
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Fig. 3: (a) Performance comparison between STM variants and
CGL on GPU. (b) Execution time breakdown of a single-thread,
includes: native-code execution, TX initialization, buffering,
opacity checking, acquiring/releasing locks, and committing.

and memory updates in parallel before the failed transactions
retry. Both hierarchical and timestamp-based validation use 1M
global version locks. The STM performance is measured in
speedup over coarse-grained locking (CGL), which serializes
critical sections with a single global lock, on GPUs. Due to the
complexity and even impossibility (for RA, HT, and LB), we
do not implement fine-grained locking.

As shown in Fig. 3 (a), STM-VBV yields undesirable per-
formance for workloads with a large number of transactions
(e.g. RA, HT, GN, and KM) due to its limited scalability. STM-
TBV and STM-HV (both Sorting and Backoff) exhibit noticeable
speedup over CGL for workloads with modest conflicts among
transactions (e.g. RA, HT, GN, and LB). KM does not benefit
from STM parallelization due to high conflict rate, which is
caused by relatively small amount of shared data competed by
many transactions. Moreover, the benefit of STM parallelization
varies with the proportion of time spent in transactions. Work-
loads with higher proportion of transaction time exhibit higher
speedup (e.g. RA, HT, and GN). Nevertheless, STM paralleliza-
tion is also crucial to the workloads with less transaction time
(e.g. LB), since critical sections would have to be serialized
otherwise. Furthermore, STM-HV-Sorting outperforms STM-
TBV (which also sorts locks) for workloads with relatively large
amount of shared data (e.g. RA and LB). On these workloads,
the amount of shared data (8M for RA, 1.75M for LB) is larger
than that of global version locks (1M); this makes timestamp-
based validation of STM-TBV suffers from false conflicts. For
the rest workloads, STM-HV-Sorting is comparable with STM-
TBV. STM-HV-Sorting outperforms STM-HV-Backoff for almost
all evaluation workloads.

4.2 Execution Time Breakdown
This section evaluates the overhead of STM system by examing
the execution time breakdown of a single-thread, as presented
in Fig. 3 (b). The second kernel of GN (GN-2) incurs significant
STM overhead, since it spends a large proportion of time in
transactions, and transactional reads and writes account for a
large proportion of the transactions. This makes STM overhead,
especially transaction initialization overhead, difficult to be
amortized by the native code execution. The rest three kernels
incur less overhead (∼20% on average). Workloads with larger
transaction read- and write-sets (e.g. LB and KM) incur higher
buffering overhead. KM also incurs high opacity overhead due
to large read-sets as well as small amount of shared data. This
is because opacity-checking after each read incurs frequent
failures in snapshot validation, and the system selects value-
based validation instead. Note that the single-thread overhead

of GPU-STM can be amortized by the additional scalability it
enables. For instance, though with significant overhead, GN-2
still exhibits ∼20x speedup. However, workloads with limited
inherent scalability (e.g. KM) are not suited for GPU-STM.

5 RELATED WORKS

Cederman et al. [1] propose lock-based STMs on GPUs. Com-
pared with the STMs, our GPU-STM supports per thread
transactions rather than per thread-block transactions. Further,
GPU-STM uses hierarchical validation to ensure scalability,
and encounter-time lock-sorting to ensure livelock freedom.
Fung et al. propose KILO TM [4], a hardware transactional
memory for GPU architectures. Similar to GPU-STM, KILO
TM also supports per thread transactions, employs value based
conflict detection, and ensures logs are coalesced. Unlike GPU-
STM, KILO TM proposes mechanisms for SIMT control flow
divergence handling related to transaction execution. GPU-
STM is implemented entirely in software, which can be used
on existing GPUs without incurring any hardware overhead.
Moreover, in KILO TM, the concurrency in commit phase is
constrained by the number and capacities of commit units.
GPU-STM allows much higher concurrency. Timestamp-based
validation is also used by TL2 [3], and value-based validation
is used by JudoSTM [8] and NOrec STM [2].

6 CONCLUSION

We propose a scalable and livelock-free STM for GPU architec-
tures to enable GPU as a further general-purpose computing
platform. Evaluation shows that dynamic data sharing on
GPUs can be easily expressed with GPU-STM. Preliminary
results show that GPU-STM outperforms coarse-grain locks on
GPUs significantly.
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