
Exploring Silicon
Nanophotonics in
Throughput Architecture
Nilanjan Goswami, Zhongqi Li, Ramkumar Shankar, and Tao Li

University of Florida

h TODAY’S STATE-OF-THE-ART GPUS have sever-

al homogeneous in-order cores. The core count is

doubling every 18 months or so. The in-order cores

are connected to several on-chip memory control-

lers using on-chip interconnect [1]. The cores

receive data from off-chip memory via the memory

controllers. Traditionally, these cores run multiple

instances of the same thread concurrently. How-

ever, GPUs can also concurrently compute mul-

tiple instances of different threads with larger

problem sizes. Larger computation load requires

large amount of off-chip memory accesses at a

significantly higher rate. Unlike multicore CPUs,

simultaneously executing threads in throughput ar-

chitectures generate relatively more memory re-

quests and create interconnect traffic hotspots. In

addition, throughput architectures have compara-

tively more active cores than multicore

CPUs, which complicates the through-

put interconnect architecture opti-

mization for bandwidth and latency

improvement. Moreover, as the number

of cores and problem size increase,

data transfer in the on-chip intercon-

nect will consume more power and dis-

sipate more heat. This will result in

temperature hotspots in throughput

interconnect and affect the reliability of the chip.

Recent advancements in CMOS-process-based

silicon nanophotonics have substantially mitigated

the power, latency, and bandwidth problem [2]–[5].

Three-dimensional stacking technology [6], [7]

provides low-latency and high-bandwidth cross-

layer communication in a compact form. With signi-

ficant bandwidth demand in throughput architec-

ture, it is anticipated that power consumption will

reach a point at which electrical interconnect and

memory subsystem design will become infeasible.

On the contrary, optically connected shader cores

and memory interface in 3-D stacked multilayer chip

seem to be an attractive alternative [2], [8]. In this

paper, we propose a 3-D stacked throughput archi-

tecture based on silicon nanophotonics technology.

The chip has a shader core layer, a cache layer, and

a built-in optically connected on-chip network layer.

The optical network layer enables dense wavelength

division multiplexing (DWDM) high-speed intercon-

nect for core-memory communication.

This paper makes the following contributions.

h We propose 3-D stacked GPU design based on

16-nm CMOS process. It connects 2048 in-order

Editors’ notes:
Massively parallel emerging GPU architectures have high throughput
demands. This paper explores how silicon nanophotonics and 3-D stacking
technologies can meet performance and power dissipation goals for these
architectures.

VSudeep Pasricha, Colorado State University and
Yi Xu, Macau University of Science and Technology

IEEE Design & Test2168-2356/14 B 2014 IEEE Copublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTC18

Silicon Nanophotonics for Future Multicore Architectures

Digital Object Identifier 10.1109/MDAT.2014.2348312

Date of publication: 15 August 2014; date of current version:

07 October 2014.



cores (64 shader cores) and 16 memory con-

trollers through an all-optical DWDM-based cross-

bar interconnect.

h We also explore the power consumption implica-

tion of several low-power photonic crossbar

designs in throughput architectures.

Why nanophotonics in throughput
architecture?

Workloads in throughput architectures generate

myriad memory requests due to data parallel exe-

cution paradigm of thousands of threads. Moreover,

off-chip memory accesses often cannot be avoided

due to limited on-chip caches and scratchpad mem-

ory size limitation. Since off-chip DRAM access

speed is not improving at a faster rate over the

generations, it is imperative to design low-latency

on-chip interconnect to reduce overall off-chip ac-

cess overhead. Such interconnect design will com-

plement the architectural optimizations of memory

accesses such as interthread memory access coa-

lescing, etc., to reduce overall off-chip latency and

bandwidth. Unlike throughput processors, tradi-

tional multicore architectures execute fewer threads

simultaneously and interthread access coalescing is

limited. In addition, active core count in throughput

architecture is much more than multicore architec-

tures. Hence, bandwidth requirement is drastically

different for the two architecture genres. Instead of

improving individual thread performance as in

CPUs, throughput architecture mostly relies on over-

all throughput of the thousands of simultaneously

executing threads. To meet such throughput

demand of existing and emerging throughput

workloads, interconnect bandwidth and latency im-

provement is imperative. Moreover, prospective

throughput architectures will include intershader

cache coherence. With numerous active cores and

thousands of concurrent threads, coherence traffic

will easily surpass the existing throughput inter-

connect bandwidth and latency specifications;

eventually, it will supersede traditional multicore

interconnect traffic demand. Since bandwidth-

latency scalability is limited, power and heating

problems will restrict electrical large interconnect

design for deep submicrometer technology nodes.

ITRS predicts silicon nanophotonics as one of the

promising future on-chip communication media.

Based on bandwidth, latency, and traffic demand in

throughput architectures, silicon nanophotonics

becomes more apt as a network-on-chip design

choice compared to multicore systems.

Nanophotonic throughput architecture
Figures 1 and 2 illustrate the simplified functional

unit layout of our proposed silicon-nanophotonics-

technology-enabled 3-D throughput architecture,

which uses multiple DWDM-based waveguides to

optically connect multiple shader cores and off-chip

memory arrays. To meet growing computation de-

mand and off-chip memory access load, overall chip

area and heat dissipation capabilities become major

design issue for throughput architectures; multi-

layered 3-D throughput architecture enables better

area utilization, cooling capabilities, and integration

of disparate technology enabled layers. We separate

shader core layer and L2 cache/memory interface

layer and use face-to-face bonding to connect the

two layers; face-to-face assembly enables decou-

pling the number of through silicon vias (TSVs) from

the total number of interconnections between the

layers. We incorporate a separate silicon nanopho-

tonic optical layer that transfers the optical signals to

enable shader core and memory controller com-

munication. TSVs are used to connect the L2 cache

layer and the optical layer. TSVs also provide clock-

ing, power, and ground signals. The optical layer

includes off-chip laser source, coupler, resonators,

and optical interface to the off-chip memory. We use

silicon waveguides to communicate between on-

chip memory controllers and off-chip memory ar-

rays with optimized DRAM chip organization.

The latest generation of Nvidia Kepler [1] GK110

series GPUs are manufactured using 28-nm process

technology and require �550-mm2 silicon die area

for fabricating 7.1 billion transistors to produce

15 shader cores [9]. Our 3-D stacked GPU micro-

architecture design is based upon 16-nm technology

[2]. We expect to have �8.0 billion transistors on

silicon die area of �400 mm2 in the shader core

layer of nanophotonic 3-D stacked throughput archi-

tecture [10]. Figure 1 (top) shows the shader core

layout, including an instruction cache, a thread

scheduling unit, a thread dispatch unit, 32 stream

processing cores (SC), 48 KB of shared memory, 32K

registers, three types (texture, constant, and global

memory segment) of L1 data caches, 16 load/store

units (LD/ST), four special functional units (SFU),

multiple geometry units, multiple texture units, and

L1–L2 cache interface. Our shader core layer die

September/October 2014 19



includes 64 shader cores consisting of 2048 shader

pipelines along with 16 texture processing function-

al blocks. In our design, the thread scheduler is

located at the center of the core layer layout and the

host interface is placed at one side for better

interfacing. Graphics-specific rasterization opera-

tions are performed by the rasterization engine,

which is shared by eight shader cores. There are a

total of eight raster engines available.

Our conservative estimate of shader core pipe-

line clock frequency is 2.0 GHz. To minimize thermal

impact, the shader core layer, which consists of 2048

SIMD pipelines, is placed at the top of the 3-D stack

(i.e., beneath the heat sink). The L2 data cache of

size 8192 KB is placed underneath the shader core

layer. Emerging throughput workloads would re-

quire more on-chip storage to reduce off-chip traffic

and to enhance overall workload throughput. In our

design, four shader cores are clustered together

[texture processor clusters (TPCs)] to share a mem-

ory controller, network interface, and crossbar inter-

face. This layer also incorporates render output units

Figure 1. (Top) Shader core layer layout, which includes 64 shader cores (SC). Each SC
has 32 stream processing cores (SP), 16 load/store units (LD/ST), four transcendental
functional blocks (TFB), register file, thread scheduler/dispatcher, and L1 caches/shared
memory. (Bottom) Cache/memory controller layer layout, which includes memory
controller, TSV array, directory, HUB, network interface, and crossbar interface
(area of four shader cores).

IEEE Design & Test20

Silicon Nanophotonics for Future Multicore Architectures



(ROP) that perform pixel blend-

ing, anti-aliasing, and atomic

memory operations, which are

specific to the graphics applica-

tions. Figure 1 (bottom) depicts

the simplified layout of the L2

cache/memory controller layer

and a zoom-in view of individ-

ual L2 subsets. The L2 layer

communicates with the shader

core layer through interconnec-

tion network; hence, L1–L2 in-

terface is implemented using an

array of vertical TSVs connect-

ing to the network layer. Each

shader core cluster has its own

subset of unified L2 cache of

size 512 KB. The local L2 subset

for any shader cluster imple-

ments direct shader core to lo-

cal L2 interfacing (face-to-face

bonding) and avoids NoC tra-

versal. In GPGPU, often inter-

shader communication is limited and if emerging

workloads are optimized for accessing local L2

subset during higher level cache misses, intercon-

nect traffic will only occur during nonlocal L2 subset

accesses. However, it will not reduce intershader

coherence traffic if present. Therefore, a separate

layer of optical interconnection network imple-

ments a crossbar interface to connect nonlocal

L2 subsets across different clusters. A memory

controller is associated with the L2 cache subset

of each cluster. The memory controllers are con-

nected to the off-chip memory modules using opti-

cal interconnection.

In our design, throughput memory accesses fol-

low these steps: When L1 cache miss occurs in the

shader core, the memory request maps the address

to the corresponding L2 subset. If the L1 miss ad-

dress is mapped to the local L2 subset, requests do

not traverse the on-chip network; instead it uses the

fast face-to-face L1–L2 interface. In throughput work-

loads, core-to-core communication is limited and an

application developer in several cases can control

off-chip data that is mapped to nonlocal L2 subset.

This behavior of GPGPU workloads justifies direct

interfacing of the local L2 subset. In case the address

is mapped to L2 subset of another cluster, the re-

quest has to traverse the optical interconnect. Since

optical interconnect carries L1 cache miss traffic, in

a highly data-intensive GPGPU application with arbi-

trary memory access pattern, the memory misses

will congest the on-chip network. Moreover, inter-

kernel data communication between the simulta-

neously executing threads in GPGPU applications

and in future shader core coherence traffic can

generate heavy L2 cache traffic. In fact, we antici-

pate that, with simultaneous execution of multiple

kernels in emerging GPGPU workloads, the off-chip

memory request traffic will surpass the L2 coher-

ence traffic. We expect that the high-bandwidth,

low-latency optical interconnect-based throughput

architecture will provide an attractive solution to this

problem. Figure 2 shows the simplified layout of the

optical interconnect layer and crossbar interface

design, respectively. Traditionally, throughput archi-

tectures require wider off-chip memory interface to

meet the data request of thousands of concurrently

running threads. Efficient interfacing of optically

connected off-chip memory motivates the layout

of the silicon waveguide. We use many-writer–

single-reader (MWSR) photonic crossbar to connect

the 16 TPCs using 128 waveguides (16 channels �
4 waveguides/channel � 2 directions) in both direc-

tions (shader core to memory controller and mem-

ory controller to shader core). Each waveguide is

Figure 2. (Left) Optical layer: 64 waveguides, optical crossbar (right),
off-chip laser source/coupler, DIMM. (Right) Crossbar module structure.

September/October 2014 21



capable of propagating 64 wavelengths (64 b per

clock, i.e., 32 B per clock period in each direction)

of light using DWDM. With 5-GHz clock, all 16 chan-

nels can achieve raw interconnect bandwidth of

40.96 Tb/s. The dedicated floor for optical inter-

connect allows us to place these waveguides in the

serpentine structure (Figure 2, left), where the wave-

guide pitch is as low as 5.5 �m [11]. The network

implements optical token-based arbitration to

realize the MWSR crossbar [also the token-less

single-writer–multiple-reader (SWMR) crossbar is

examined]. All types of traffic (read request, write

request, and read reply) enter the network through

an interface buffer. In the MWSR crossbar, a reserved

optical token leaves the source node and travels

along with the tail of the last flit of the packet until it

reaches destination. Once transfer is completed, the

free token traverses the waveguide until another

node grabs it. The destination nodes identify tokens.

On the contrary, in SWMR, all the optical channels

are writable by only one source node and there

are multiple channels per destination node. The

SWMR crossbar behaves like a high-throughput low-

latency electrical crossbar with variable source-to-

destination delay.

Our optical interconnect incorporates the MWSR-

based crossbar that requires arbitration mechanism,

which is used in token ring LAN system arbitration to

resolve the read requests sent by multiple shader

nodes. Unlike multithreaded CPU workloads,

throughput workloads execute the same instruction

simultaneously (SIMD lockstep execution paradigm)

in different shader cores that request data from

different L2 subsets. Since the shader core count is

comparably more than the core count in the multi-

core system, usually average token grab latency for

channel reservation of a requesting shader is higher.

An alternative to MWSR is the SWMR crossbar, which

is relatively power hungry (more laser power is

required to drive (node count�1) photodetectors as
compared to one photodetector in MWSR). SWMR

incorporates a separate dedicated channel for each

source channel that sends packets to a destination;

hence, no channel arbitration mechanism is re-

quired. The static power of the crossbar is estimated

as 0.33 W [11], [12]. The dynamic energy consump-

tion is 200 fJ/b for transmission and the dynamic

power for arbitration is negligible. Figure 3 shows

vertically stacked layers in the chip.

Evaluation

Experimental setup
In this study, we have used 17 real-world GPGPU

workloads (Table 1a) from Nvidia CUDA SDK,

Rodinia, and Parboil suites. Our evaluation is based

on the cycle-based simulator GPGPU-Sim [13]. It has

a modified version of the electrical interconnect

simulator Booksim to simulate shader core and

memory controller traffic. We have replaced the

Booksim (Intersim in GPGPU-Sim) with the in-house

optical interconnect simulator. It models the serpen-

tine network that connects 16 TPC and 16 memory

controllers using a crossbar and simulates flit-level

optical traffic. We used two different system models

presented in Table 1b. The baseline system has a

state-of-the-art electrical network, electrically con-

nected memory, and immediate postdenominator-

based round-robin warp scheduler. Table 1c shows

six optical crossbars implemented to evaluate our

design.

We instrumented GPGPU-Sim and the optical

network simulator to extract several hardware ac-

cess statistics to calculate power. We developed an

architecture level GPGPU power simulator based on

heavily remodeled McPAT [14] that fits into GPU

pipeline. The simulator interfaces with GPGPU-Sim

to calculate runtime power of major components

of GPU, including an electrical NoC. The NoC

model is composed of single links and a traditional

four-staged router with flit buffers, arbiters, and a

crossbar. The power simulator simulates the elec-

trical NoC with 22-nm technology. We further scale

the NoC parameters down to 16 nm. For the optical

NoC power consumption, we used the statisticsFigure 3. Cross-sectional schematic of the chip.

IEEE Design & Test22

Silicon Nanophotonics for Future Multicore Architectures



reported in [15] and [16], as summarized in

Table 1d [21]–[23]. The energy coupling loss of the

laser source into the chips is reported to be �8 dB

[20]. In order to achieve a bit error rate of 10�15,

each photodetector requires 5-�W power [12] to

successfully receive data, and each modulator

consumes 200 fJ of power to modulate one bit of

data [24]. To model the trimming issue, we assume

1-�W heating power per ring per Kelvin.

Analysis
Figure 4 compares the different designs in terms

of shader core to memory controller latency (flit

level) and memory controller to shader core latency.

Note that, in Figure 4 (top), SWMR photonic inter-

connect experiences relatively lower latency (81%–

90% reduction) for read and write requests with re-

spect to the MWSR-based crossbar (59%–66% reduc-

tion). The MWSR-based crossbar uses the token to

implement the mutually exclusive access to the des-

tination node. On the contrary, the SWMR-based

crossbar has multiple dedicated channels to the

destination nodes from a source node. Hence, in

MWSR, a source node may wait even when the des-

tination channel is idle due to unavailability of the

destination token. This latency is completely hidden

in the SWMR-based crossbar. However, SWMR is

different from a traditional electrical crossbar be-

cause the latency in the SWMR-based optical cross-

bar depends upon the distance between the source

and the destination node in the waveguide. In case

of GPU microarchitecture, this phenomenon exhi-

bits adverse effects when memory traffic becomes

bursty. Memory controller to shader core traffic la-

tency of the MWSR crossbar in Figure 4 (bottom) is

significantly lower than (49%–95% reduction) the

electrical crossbar. Comparatively, the SWMR cross-

bar shows lower latency (52%–94% reduction) with

respect to the electrical baseline. Memory-intensive

benchmarks such as BFS (90%), MM (87%), DG

(77%), RAY (72%), and 64H (75%) exhibit maximum

benefit from optical network. All these benchmarks

have a large number of read and write memory ac-

cesses. As we increase the channel bandwidth,

memory controller to shader core latency keeps on

decreasing. With the increase in the flit size, there

will be a smaller number of flits allocable in the

network interface buffer. Hence, average wait time

in buffer is decreased. Close examination of the

network statistics also reveals that in MWSR the

Table 1 (a) GPGPU workloads (?: memory intensive).

(b) GPU configuration (optical/electrical). (c) Optical crossbar

configuration. (d) Optical loss in different components

[12], [21]–[23].

September/October 2014 23



token allocation delay largely

dominates overall flit latency.

Also, buffer wait time in SWMR

is less than MWSR due to the

lack of token allocation penalty

experienced in MWSR.

Benchmarks such as BFS,

SRAD, AES, PF, 64H, HY, and

MM yield higher shader to mem-

ory controller latency when

the channel bandwidth is in-

creased. These benchmarks

have more data read instruc-

tions (load) and less data write

instructions (store). The data

read request size is 8 B, which

is smaller than the smallest

channel bandwidth used. With

the increase in channel band-

width, more bytes are wasted

and it does not reduce the over-

all flit count, which is the key

reason behind latency improve-

ment for larger channel band-

width. Since memory controller

to shader core traffic only has

64-B packets, it does not exhibit

similar effect. With the increase

in flit size, flit count reduces

linearly and overall wait time in

the buffer is also decreased.

Figure 5 show the speedup

and power consumption char-

acteristics of the different de-

signs. On average, the SWMR

16-B crossbar has 0.04% lower

performance than 16-B electri-

cal mesh, but as we increase the

bandwidth to 32 B and 64 B, the

performance increase is 3% and

5%, respectively. Interestingly,

benchmarks that are dominated

by a large number of memory

accesses demonstrate better

performance increase. Maxi-

mum performance increase is

observed in BFS (17%) with

64-B channel bandwidth. How-

ever, the MWSR-based crossbar

shows almost 4% improvement

Figure 4. (Top) Shader to memory controller latency (normalized
to electrical mesh 16-B, GM: geometric mean). (Bottom) Memory
controller to shader latency (normalized to electrical mesh
16-B, GM: geometric mean).

Figure 5. (Top) Speedup with respect to electrical mesh network
16-B channel bandwidth (GM: geometric mean). (Bottom) Network
power consumption normalized to electrical mesh 16-B channel
(GM: geometric mean).

IEEE Design & Test24

Silicon Nanophotonics for Future Multicore Architectures



in performance, which is attributed to the large

amount of delay experienced by the packets to grab

the destination token.

The power consumption in the optical crossbar

decreases drastically (Figure 5, bottom). On aver-

age, the SWMR crossbar shows almost 73% power

saving and 1% performance degradation as com-

pared to electrical 16-B mesh baseline. As expected,

average MWSR power saving is comparatively higher

(98%) with only 2% performance degradation.

Memory-intensive workloads benefit most due to

the optical interconnect. SRAD, SSLA, and HS show

maximum power saving due to its heavy memory

access in MWSR. We recommend the MWSR-based

crossbar with 32-B channel bandwidth as the best

solution that comes with 91% power saving and 1%

average increase in performance. From our exper-

imental results, the static power constitutes signifi-

cant portion of the whole network power. This result

is in accordance with [24].

Related work
Architectures such as Corona [2], Firefly [4],

Phastlane [3], and Flexishare [5] have demonstrated

3-D stacked multicore chip with optical token-based

arbitration, electrical intracluster communication

with optical crossbar-based intercluster commu-

nication, switch-based photonic interconnect,

electrical–optical token stream-based arbitration

for channel assignment, and credit distribution in

the NoC, respectively. However, investigation of the

power and performance of silicon-nanophotonic-

assisted GPU is still lacking. In this paper, we make the

first step in exploring photonics-enabled GPU micro-

architecture that integrates shader cores, caches, and

off-chip optical memory interfaces in the different

layers of 3-D stacked chip. We have customized [17] to

design off-chip memory stacking and developed

sequential and concurrent multiple memory access

scheduling. Although Al Maashri et al. [18] have

explored the 3-D stacked cache architecture in

multilayer GPU implementation, they have not ad-

dressed the issues of NoC congestion or off-stack

memory access bottleneck. Morris et al. in [19] pro-

posed a 3-D photonic CPU interconnect that can

dynamically reconfigure without system intervention

and allocate channel bandwidth.

WE HAVE PROPOSED a 3-D stacked nanophotonic

throughput architecture that provides 91% average

reduction in NoC dynamic power (in turn heat) with

4% average increase in performance and up to 95%

average NoC latency reduction as compared to the

state-of-the-art electrical on-chip interconnect-based

GPU. Our experiments reveal that, in MWSR-type

interconnects, the overall flit latency is largely domi-

nated by the token ring delay. In contrast, SWMR

suffers from buffer wait latency. Furthermore, with

increasing off-chip memory demand, we expect that

the proposed optically connected throughput archi-

tecture will attain further improvements. h

h References
[1] Nvidia Corporation, ‘‘NVIDIA’s next generation CUDA

compute architecture: Kepler GK110,’’ white paper.

[Online]. Available: http://www.nvidia.com/content/

PDF/kepler/NVIDIA-Kepler-GK110-Architecture-

Whitepaper.pdf.

[2] D. Vantrease et al., ‘‘Corona: System implications

of emerging nanophotonic technology,’’ in Proc. 35th

Annu. Int. Symp. Comput. Architect., Washington, DC,

USA, pp. 153–164, DOI: 10.1109/ISCA.2008.35.

[3] M. J. Cianchetti, J. C. Kerekes, and D. H. Albonesi,

‘‘Phastlane: A rapid transit optical routing network,’’ in

Proc. 36th Annu. Int. Symp. Comput. Architect., Austin,

TX, USA, 2009, pp. 441–450.

[4] Y. Pan et al., ‘‘Firefly: Illuminating future network-on-chip

with nanophotonics,’’ in Proc. 36th Annu. Int. Symp.

Comput. Architect., New York, NY, USA, pp. 429–440,

DOI: 10.1145/1555754.1555808.

[5] Y. Pan, J. Kim, and G. Memik, ‘‘FlexiShare: Channel

sharing for an energy-efficient nanophotonic crossbar,’’

in Proc. IEEE 16th Int. Symp. High Performance

Comput. Architect., Jan. 2010, DOI: 10.1109/HPCA.

2010.5416626.

[6] L. Eeckhout, H. Vandierendonck, and K. De Bosschere,

‘‘Designing computer architecture research

workloads,’’ Computer, vol. 36, no. 2, pp. 65–71,

Feb. 2003.

[7] K. Hoste and L. Eeckhout,

‘‘Microarchitecture-independent workload

characterization,’’ IEEE Micro, vol. 27, no. 3, pp. 63–72,

May/Jun. 2007.

[8] S. Beamer et al., ‘‘Re-architecting DRAM with

monolithically integrated silicon photonics,’’ in Proc.

IEEE 37th Int. Symp. Comput. Architect.,

New York, NY, USA, pp. 129–140,

DOI: 10.1145/1815961.1815978.

[9] P. V. Bolotoff, ‘‘A quick analysis of the NVIDIA Fermi

architecture,’’ 2010. [Online]. Available: http://alasir.

September/October 2014 25



com/articles/nvidia_fermi_architecture/gt200_gt300_

architecture.shtml.

[10] N. Goswami, A. Verma, and T. Li, ‘‘GPU-PowerSim:

A power simulation framework for throughput

processors,’’ 2012. [Online]. Available: http://www.

ideal.ece.ufl.edu/main.php?action=gpu-powersim.

[11] A. Joshi et al., ‘‘Silicon-photonic clos networks

for global on-chip communication,’’ in Proc.

3rd ACM/IEEE Int. Symp. Networks-on-Chip,

May 2009, pp. 124–133, DOI: 10.1109/NOCS.

2009.5071460.

[12] A. Melloni, M. Martinelli, G. Cusmai, and R. Siano,

‘‘Experimental evaluation of ring resonator filters

impact on the bit error rate in non return to zero

transmission systems,’’ Opt. Commun., vol. 234,

pp. 211–216, 2004.

[13] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and

T. M. Aamodt, ‘‘Analyzing CUDA workloads using

a detailed GPU simulator,’’ in Proc. Int. Symp.

Performance Anal. Syst. Softw., 2009, DOI: 10.1109/

ISPASS.2009.4919648.

[14] J. A. Stratton et al., ‘‘Parboil: A revised benchmark suite

for scientific and commercial throughput computing,’’

in Cntr. Reliable High-Performance Comput., 2012.

[15] NVIDIA Developer Zone, N-Queens Solver. [Online].

Available: http://forums.nvidia.com/index.php?

showtopic=76893.

[16] S. Pai, M. J. Thazhuthaveetil, and R. Govindarajan,

‘‘Improving GPGPU concurrency with elastic

kernels,’’ in Proc. 18th Int. Conf. Architect. Support

Programm. Lang. Oper. Syst., Houston, TX, USA,

2013, pp. 407–418.

[17] NVIDIA CUDA Zone, ‘‘CUDA code samples,’’ 2013.

[Online]. Available: https://developer.nvidia.com/

gpu-computing-sdk.

[18] A. Al Maashri, G. Sun, X. Dong, V. Narayanan, and

Y. Xie, ‘‘3D GPU architecture using cache stacking:

Performance, cost, power and thermal analysis,’’ in

Proc. IEEE Int. Conf. Comput. Design, Lake Tahoe,

CA, USA, 2009, pp. 254–259.

[19] R. Morris, A. K. Kodi, and A. Louri, ‘‘Dynamic

reconfiguration of 3D photonic networks-on-chip

for maximizing performance and improving fault

tolerance,’’ in Proc. 45th Annu. IEEE/ACM Int.

Symp. Microarchitect., 2012, pp. 282–293.

[20] H. Takesue, N. Matsuda, E. Kuramochi, W. J. Munro,

and M. Notomi, ‘‘An on-chip coupled resonator optical

waveguide single-photon buffer,’’ Nature Commun.,

vol. 4, Oct. 2013, article 2725, DOI: 10.1038/

ncomms3725.

[21] V. R. Almeida, C. A. Barrios, R. R. Panepucci, and

M. Lipson, ‘‘All-optical control of light on a

silicon chip,’’ Nature, vol. 431, pp. 1081–1084,

2004.

[22] Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and

M. Lipson, ‘‘12.5 Gbit/s carrier-injection-based silicon

micro-ring silicon modulators,’’ Opt. Exp., vol. 15,

pp. 430–436, 2007.

[23] Z. Li, R. Zhou, and T. Li, ‘‘Exploring high-performance

and energy proportional interface for phase change

memory systems,’’ in Proc. IEEE 19th Int. Symp.

High Performance Comput. Architect., 2013,

pp. 210–221.

[24] G. T. Reed, G. Mashanovich, F. Y. Gardes, and

D. J. Thomson, ‘‘Silicon optical modulators,’’ Nature

Photon., vol. 4, no. 8, pp. 518–526, 2010.

Nilanjan Goswami is an Architecture and Mod-
eling Engineer at a leading product development
company. His research interests include emerging-
technology-based throughput processor design,
power-performance co-optimization of throughput
core architecture, interconnect, and renewable-
energy-based throughput architectures. Goswami
has a PhD in electrical and computer engineering
from the University of Florida, Gainesville, FL, USA.
He is a member of the IEEE.

Zhongqi Li is currently with Qualcomm Inc., San
Diego, CA, USA, where he works as Adreno GPU
Performance Architect for the Snapdragon mobile
processor. Prior to that, he worked in Marvell Semi-
conductor as a Processor Performance Engineer
(intern) for Marvell’s next-generation ARM processor.
His current research interests include CPU/GPU
architecture, network-on-chip, and multicore proces-
sor system. Li has a BS and an MS from the Univ-
ersity of Electronic Science and Technology of
China, Chengdu, China (2006 and 2009, respec-
tively) and a PhD from the University of Florida,
Gainesville, FL, USA (2012).

Ramkumar Shankar is a GPU Architecture En-
gineer at Qualcomm Technologies, Inc., San Diego,
CA, USA, where he works on the next-generation
GPUs for mobile computing. His research focuses on
GPGPU architecture optimization and workload
characterization. Shankar has an MS in electrical
and computer engineering from the University of
Florida, Gainesville, FL, USA.

IEEE Design & Test26

Silicon Nanophotonics for Future Multicore Architectures



Tao Li is an Associate Professor in the Department
of Electrical and Computer Engineering, University of
Florida, Gainesville, FL, USA. His research interests
include computer architecture, microprocessor/
memory/storage system design, virtualization tech-
nologies, energy-efficient/sustainable/dependable
data center, cloud/big data computing platforms,
the impacts of emerging technologies/applications

on computing, and evaluation of computer systems.
Li has a PhD in computer engineering from the Univ-
ersity of Texas at Austin, Austin, TX, USA.

h Direct questions and comments about this article
to Nilanjan Goswami, ECE Department, University of
Florida, Gainesville, FL 32611 USA; nil@ufl.edu.

September/October 2014 27



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


