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Abstract—Graphics processing units (GPU), due to their massive computational power with up to thousands of concurrent threads
and general-purpose GPU (GPGPU) programming models such as CUDA and OpenCL, have opened up new opportunities for
speeding up general-purpose parallel applications. Unfortunately, pre-silicon architectural simulation of modern-day GPGPU
architectures and workloads is extremely time-consuming. This paper addresses the GPGPU simulation challenge by proposing a
framework, called GPGPU-MiniBench, for generating miniature, yet representative GPGPU workloads. GPGPU-MiniBench first
summarizes the inherent execution behavior of existing GPGPU workloads in a profile. The central component in the profile is the
Divergence Flow Statistics Graph (DFSG), which characterizes the dynamic control flow behavior including loops and branches of a
GPGPU kernel. GPGPU-MiniBench generates a synthetic miniature GPGPU kernel that exhibits similar execution characteristics as
the original workload, yet its execution time is much shorter thereby dramatically speeding up architectural simulation. Our
experimental results show that GPGPU-MiniBench can speed up GPGPU architectural simulation by a factor of 49x on average and
up to 589, with an average IPC error of 4.7% across a broad set of GPGPU benchmarks from the CUDA SDK, Rodinia and Parboil

benchmark suites. We also demonstrate the usefulness of GPGPU-MiniBench for driving GPU architecture exploration.

Index Terms—computer architecture, GPGPU, simulation acceleration, workload synthesis

1 INTRODUCTION

N recent years, interest has grown rapidly towards

harnessing the power of graphics hardware to perfor-
m general-purpose parallel computing, so-called GPGPU
computing. Thanks to the affordable, powerful and pro-
grammable GPU hardware [1], developers are increasing-
ly using commodity GPUs to perform computation-heavy
tasks that would otherwise require a large compute clus-
ter. GPGPU programming models such as CUDA [2], ATI
Stream Technology [3], and OpenCL [4] allow programmers
to use hundreds of thousands of threads to leverage the
plenty of computation resources of today’s GPUs to achieve
massive computational power.

The computational power of modern-day GPUs is in
sharp contrast to the slow speed of GPGPU architectural
simulation. GPGPU architectural simulation is extremely
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time-consuming, for two reasons. First, architects need to
simulate realistic applications with large input data sets to
evaluate GPU micro-architecture designs with high fidelity.
This implies that many (up to hundreds of thousands)
threads need to be simulated. Second, if not single-threaded,
parallel GPU simulators are limited by the available number
of cores in the simulation host machine, which is typically a
multi-core CPU [5] [6] [7]. (Although the latest version (3.x)
of the publicly available GPGPU-Sim enables asynchronous
kernel launches from the CPU using pthread parallelism,
the GPU simulation engine itself is single-threaded [8].)
Furthermore, given the increased complexity of GPUs, it is
to be expected that the GPGPU simulation challenge is only
going to increase in importance in the years to come.

Table 1 shows the execution time of several CUDA
benchmarks on a real GPU device (NVidia GeForce 295) and
a GPGPU performance simulator (GPGPU-Sim) [5]. These
measurements show that GPGPU performance simulation
is approximately 9 orders of magnitude slower compared to
real hardware. Given how computer architects heavily rely
on simulators for exploration purposes at various stages of
the design, accelerating GPGPU architectural simulation is
imperative.

Existing solutions to accelerating architectural simula-
tion of CPUs, such as sampling or statistical simulation, can-
not be readily applied to GPGPU simulation because of the
relatively small number of instructions executed per thread
(tens to hundreds of thousands of instructions) in a typical
GPGPU kernel — CPU benchmarks typically execute bil-
lions to trillions of instructions per thread. Furthermore, the
large number of branch instructions in GPGPU workloads
prohibits the use of spreadsheet-based modeling techniques
used for pure-graphics GPU performance evaluation. We
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therefore propose an alternative approach in this paper.
This paper proposes GPGPU-MiniBench, a framework
that generates miniature proxies of GPGPU workloads that
are both accurate and fast to simulate. GPGPU-MiniBench
first collects a profile to capture a GPGPU workload’s ex-
ecution behavior. The central component in the profile is
the Divergence Flow Statistics Graph (DFSG) to characterize
the control flow behavior of threads in a GPGPU kernel in a
concise and comprehensive manner. Furthermore, we model
shared memory bank conflicts, memory coalescing behav-
ior, and thread hierarchy, next to a thread’s control flow
behavior and instruction mix. GPGPU-MiniBench generates
a synthetic GPGPU kernel from this statistical profile that
exhibits similar execution characteristics, yet is much shorter
to simulate compared to the original GPGPU workload.
More specifically, we make the following contributions:

o We analyze why existing micro-architecture simula-
tion acceleration techniques for CPUs and GPUs do
not readily apply to GPGPU performance evaluation.

o We propose the new concept of the Divergence Flow
Statistics Graph (DFSG) to characterize the dynamic
control flow behavior of GPGPU kernel threads.

e We derive and characterize several typical loop pat-
terns in existing GPGPU kernels, which we exploit to
accelerate GPGPU architecture simulation.

e We develop a synthesis framework, called GPGPU-
MiniBench, to generate miniature proxies of CUDA
GPGPU kernels, which retain similar performance
but require much shorter simulation times.

o We validate the framework on four GPGPU micro-
architectures. Our experimental results show that
GPGPU-MiniBench can speed up GPGPU micro-
architecture simulation by a factor of 49 x on average
and up to 589x with an average IPC error of 4.7%.

The rest of the paper is organized as follows. Section 2
provides general background on GPGPU architectures and
CUDA. Section 3 describes our characterization for 34 CUD-
A benchmarks and analyzes why existing simulation accel-
eration techniques for CPUs and GPUs are not suitable for
GPGPU. Section 4 elaborates on the design of our GPGPU-
MiniBench framework. Section 5 depicts our experimental
methodology, while Section 6 presents evaluation results
and analysis. Section 7 discusses related work and Section 8
concludes the paper.

2 BACKGROUND

GPGPU refers to running General-Purpose computation on
Graphics Processing Units. Enhancements in the hardware
along with novel programming models such as CUDA [2],

TABLE 1: Execution time comparison of CUDA programs
on a real NVIDIA GeForce 295 GPU device vs. the
GPGPU-Sim architectural simulator.

benchmark | grid CTA GPU (ms) | Simulation
RPES (65535,1,1) | (64,1,1) 0.5 > 3.8 days
TPACF (201,1,1) (256,1,1) | 0.05 > 17 days
BLK (480,1,1) (128,1,1) | 0.92 > 12 days
PNS (256,1,1) (256,1,1) | 0.7 > 11 days
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Fig. 1: GPGPU architecture overview.

OpenCL [4], and Brook+ [9] have spurred this trend. In this
paper, we consider NVidia’s GPGPU architecture and the
CUDA programming model without loss of generality.

Recently, NVidia introduced the Tesla, Fermi, and Kepler
GPU architectures, which significantly extend GPU capabil-
ities beyond graphics [2] [10]. Its massively multithreaded
processor array becomes a highly efficient unified platform
for both graphics and general-purpose parallel computing
applications [10]. As shown in Figure 1, a typical GPU
consists of a number of streaming multi-processors (SM, also
called shader core), each containing multiple streaming pro-
cessor (SP) cores. Each SM also has several special function
units (SFUs), an instruction fetch and issue unit, a constant
cache, and a shared memory. The number of SMs and SPs
may vary across GPU generations. The SMs and the on-chip
global memory interface are connected to an interconnection
network.

CUDA (Compute Unified Device Architecture) is a pro-
gramming model developed for NVidia GPUs, which allows
programmers to write programs using C functions called
kernels [2] [11]. The CUDA threads are organized in a
three-level hierarchy. The lowest level is the thread itself.
The next level is a group of threads called the Cooperative
Thread Array (CTA) or thread block; threads in a CTA are
allowed to execute concurrently on an SM, communicate via
shared memory, and synchronize through barriers. At the
top level, a number of CTAs are grouped together to form
a grid. Threads may execute down different paths because
of branches. When threads in a single hardware thread
execution batch (an NVidia warp or an AMD wavefront)
follow different execution paths, they must be executed
sequentially — a notion called branch or warp divergence
— which is harmful to performance.

A CUDA program typically consists of sequential and
parallel parts. The sequential parts run on the CPU and the
parallel parts run on the GPU. The parallel parts themselves
consist of one or more kernels, which can run concurrently
from the Fermi architecture [12] onwards. Since our goal
is to accelerate GPGPU micro-architecture simulation, we
focus on the parallel kernels. The sequential parts and the
data passing between CPU and GPU are out of the scope of
this paper.

3 WHY CPU SIMULATION ACCELERATION TECH-
NIQUES Do NoT APPLY TO GPGPU

Before proposing our solution to the GPGPU architecture
simulation challenge, we first revisit existing CPU simula-
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Fig. 2: Normalized IPC (vertical axis) as a function of the
fraction of sampled threads (horizontal axis).

1.95
18 | —8@—dll_mr [
1.65 [ = . -
s o —— icache_h
. 1'3;5 _// \.\ —l—read_gm [
E 1.2 r —*—gl coal [
g 1.05 i
0.9
% 075 / //?:/
S 06 ]
E oss
P 0.3
0.15 ~
0 )\
0.15
0 0.2 0.4 0.6 0.8 1 1.2

Fraction sampled threads

Fig. 3: Normalized performance metrics as a function of the
fraction sampled threads for MU M. dl1_mr:L1 data cache
miss rate; icache_h: instruction cache hit rate; read_gm:
global memory read count; gl_coal: global memory
coalescing stalls.

tion acceleration techniques.

3.1 CUDA Kernel Characterization

We do this by first characterizing existing CUDA kernels to
provide supportive quantitative evidence during the anal-
ysis and discussion of this study. We collect the following
characteristics using the GPGPU-Sim simulator [5]: instruc-
tion mix, basic block size, and the dynamic instruction count
per thread. The 35 CUDA kernels that we consider in this
analysis were drawn from the CUDA SDK, Rodinia and Par-
boil benchmark suites. (See later for a detailed description
of the experimental setup.)

The number of static basic blocks in a CUDA kernel
ranges from 10 to 25 for most benchmarks, with an av-
erage of 22.8 basic blocks, see Figure 4. Only two of the
benchmarks, namely CL and PNS, show more than 100 basic
blocks. The code footprint is substantially smaller for CUDA
kernels compared to typical CPU benchmarks such as SPEC

# of basic blocks

Fig. 4: Number of static basic blocks (executed at least
once).
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Fig. 6: Percentage dynamically executed branch
instructions.

CPU and MediaBench with an average basic block count of
265.5 and 584.2, respectively [13].

Figure 5 illustrates the number of dynamically executed
instructions per thread. This number typically varies from
dozens to tens of thousands and is extremely small com-
pared to SPEC CPU [14] and PARSEC [15] benchmarks,
which have dynamic instruction counts in the tens to hun-
dreds of billions range.

Furthermore, CUDA kernels feature large numbers of
threads, up to hundreds of thousands of threads per kernel
(i.e., unlimited for practical purposes). This is yet anoth-
er key difference with typical CPU workloads, which are
single-threaded or feature a limited number of threads.

3.2 Revisiting CPU Simulation Acceleration Tech-
niques for GPGPU

There exist a number of CPU simulation acceleration tech-
niques, which we revisit now in the context of GPGPU:
sampled simulation in time and space, statistical simulation,
and reduced input sets.

Sampling in time. Sampled simulation is a popular
simulation acceleration technique for CPUs. Its basic idea
is to sample the dynamic instruction stream and simulate a
limited number of snapshots from the total program execu-
tion and then extrapolate performance from these snapshots
to the entire program execution. Existing solutions in the
CPU space sample randomly [16], periodically [17] [18], or
based on application phase behavior [19]. TBPoint [20] very
recently proposes sampling-in-time for GPGPU workloads.
Although TBPoint achieves high accuracy while simulating
10% to 20% of the total kernel execution time, sampling
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workloads with high control/memory divergence behav-
ior remains challenging. GPGPU-Minibench also targets
these challenging workloads while achieving even higher
speedups at small errors.

Sampling in space. An alternative to sampling in time
might be to sample in space, or to simulate a limited number
of threads out of the many (hundreds of thousands of)
threads that constitute a GPGPU kernel. Note that sampling
in space does not sample instructions from a single thread
but instead samples threads from a GPGPU kernel. As the
threads of a kernel may share hardware resources including
global memory or interconnection network, sampling in
space is likely to change several of the important GPGPU
performance characteristics such as branch divergence [21]
and memory coalescing behavior. In addition, the access
distribution to the interconnection network, the partition
camp [22], bandwidth utility and DRAM efficiency of the
memory channels are also likely to be altered when reducing
the number of threads. We experimentally confirm this as
illustrated in Figure 2 which shows IPC as we (randomly)
sample threads, for our 35 benchmarks. For sampling in
space to work, we would need to observe a linear relation-
ship between the sampled IPC and the fraction of sampled
threads. This seems to be the case for many benchmarks.
Unfortunately, not all benchmarks exhibit this behavior, see
for example MUM. Figure 3 explains why: the L1 data cache
miss rate, instruction cache hit rate, the global memory
read count, and number of stalls caused by global memory
coalescing does not change linearly with sampled thread
count. (We also tried sampling warps instead of threads,
and found it not to work either.) In summary, sampling in
space works for many benchmarks, but not all, hence it is
not a generally applicable technique. (Sampling in space by
sampling a few cores and scaling down global resources
such as memory bandwidth to preserve global resource
contention may be a possible solution but falls out of the
scope of this paper.)

Statistical simulation. Statistical simulation reduces
simulation time by generating a small synthetic program
with the same behavioral characteristics as the original
workload [23] [24]. The basic idea during the synthesis
phase is to reduce the number of times each basic block is
executed proportional to the execution of the basic block in
the original workload. Given the small dynamic instruction
count per thread and the small number of basic blocks in
a GPGPU kernel, this approach is unlikely to work for
GPGPU kernels, as infrequently executed basic blocks get
eliminated during the synthesis process.

Reduced inputs. Reducing the input data set is yet
another popular and easy-to-apply approach for reducing
simulation time. A significant concern with reduced input
sets for GPGPU workloads is that performance (IPC) heavily
correlates with problem size, as illustrated in Figure 7 for
the NW and HS benchmarks. (We made similar observa-
tions for the other benchmarks.) Hence, reducing input size
may affect thread count, its interactions through shared
resources and the workload’s branch and memory behavior.
KleinOsowski et al. [25] reported how challenging input set
reduction is for CPUs; we expect input set reduction to be
even more challenging in the GPGPU context.

GPU spreadsheet modeling. Current practice in GPU
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Fig. 8: The percentage of branch instructions in typical
graphics GPU kernels.

pre-silicon performance evaluation using graphics work-
loads — typically spreadsheet-based analysis — does not
apply to GPGPU either. GPGPU workloads exhibit more
irregular code than typical graphics workloads, which is
apparent from its branch behavior, as illustrated in Figure
6. Although the percentage of branches (8.6% on average)
is low compared to SPEC CPU programs [26], it is high
compared to graphics applications: an average number of
4.5% of all dynamically executed instructions are branches
in graphics benchmarks (OpenCL programs from NVidia
GPU Computing SDK [27]), see Figure 8.

4 GPGPU BENCHMARK SYNTHESIS

We now propose GPGPU workload synthesis to address
the GPGPU simulation challenge. Our framework, called
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Fig. 9: The GPGPU-MiniBench synthesis framework.

GPGPU-MiniBench, generates miniature proxies of real
GPGPU kernels that are both representative and fast to sim-
ulate. GPGPU-MiniBench consists of three steps as shown in
Figure 9. In the first step, a profile is collected by capturing
the threads’ inherent execution characteristics by executing
the GPGPU workload with a given input within the profiler.
Subsequently, the profile is used as input to a code generator
to generate a synthetic miniature GPGPU benchmark; the
original benchmark’s input is contained in the synthetic
kernel clone. In the final step, the synthetic benchmark is
simulated on an execution-driven architectural simulator,
such as GPGPU-Sim. The final goal of GPGPU-MiniBench
is to generate miniature GPGPU kernels that are representa-
tive of the original kernels, yet run for a shorter amount of
time, yielding significant simulation speedups.

Note that we focus on synthesizing a miniature proxy
for a single kernel with a large input data set. If a GPGPU
benchmark consists of multiple kernels or the kernels are
executed multiple times, GPGPU-MiniBench can be easily
applied to each kernel (execution).

4.1 GPGPU Kernel Profiling

During kernel profiling, we collect a number of program
characteristics that collectively capture the inherent execu-
tion characteristics of GPGPU workloads. These character-
istics are such that they enable reusing synthetic miniature
benchmarks across GPGPU micro-architectures. Profiling is
a one-time cost and is done using a heavily modified version
of CUDA-Sim, which is 5 to 15 times faster compared to tim-
ing simulation. We now describe the collected characteristics
in more detail.

4.1.1

As mentioned in Section 2, the batch of threads that execute
a kernel is organized as a grid of CTAs. The thread hierarchy
characteristic controls the amount of thread-level parallelis-
m of a kernel and how threads are assigned to streaming
multiprocessors (SM). Since reducing the number of threads
is likely to change the overall performance of a kernel as
discussed in Section 3, we maintain the same grid and CTA
dimensions in the synthetic as in the original kernel.

Thread Hierarchy

4.1.2

For GPGPU, different instructions may have dramatically
different throughput [28] [29]. Note that the instruction
throughput is defined as the number operations executed
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Fig. 10: The Divergence Flow Statistics Graph.

per clock cycle per multiprocessor. For example, for NVidi-
a’s compute capability 2.0, the throughput of the native
32-bit floating-point add instruction is 32, while it is only
4 for the 32-bit floating-point instructions reciprocal and
reciprocal square root [28]. Preserving the instruction mix is
thus important to accurately mimic the performance of a
GPGPU kernel. We therefore profile instruction opcodes and
data types, which are used to fill in instructions in the basic
blocks of the synthetic clone. Additional information must
be collected for branch instructions such as sefp and bra, and
memory instructions such as Id and st. More details will
be presented in the following paragraphs regarding branch
memory behavior.

4.1.3 Control Flow

Capturing the control flow behavior for each thread by
collecting a trace for each thread would be prohibitive-
ly costly because of the massive number of threads in a
GPGPU kernel. CUDA-Sim for example, simulates each
thread independently, rather than grouping them into warps
and running warp-instructions in lockstep as the actual
hardware does; this makes it difficult to collect warp diver-
gence information without generating traces. We therefore
propose the Divergence Flow Statistics Graph (DFSG) to
characterize the control flow behavior of a kernel in a
concise and comprehensive way.

Figure 10 illustrates the DFSG. The nodes (solid line
boxes) represent basic blocks. Each node contains four fields:
name, ECount, LCount, and SCount. The name field is a
basic block’s ID. ECount is the execution count denoting
how many times a basic block is executed by all threads.
LCount is the loop count and quantifies how many times the
given basic block was iterated over in a loop by all threads.
We use SCount to count how often synchronizations happen
at the basic block.

The edges (solid arrows) represent the jumps between
basic blocks. A dash box near the start of a solid arrow
denotes the statistics of a basic block’s out-edge. A box near
the end of an arrow represents the basic block’s in-edge.
OECount and IECount represent how often control flow
leaves or jumps to the basic block by all threads, respec-
tively. TCount denotes the number of threads executing the
edge. Note that because of loops, the number of times an
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edge is executed (OECount or IECount) does not need to be
equal to the number of threads executing the edge (TCount);
TCount counts the number of threads executing the edge at
least once, and OECount and IECount count how often the
edge is executed by any thread.

4.1.4 Shared Memory Bank Conflicts

Shared memory is as fast as a register on a typical GPU.
However, the performance of shared memory decreases
dramatically if there are bank conflicts between thread-
s [2] [21] [30]. In order to preserve similar shared memory
bank conflict behavior in the synthetic clone, we need to
clone the shared arrays and their access behavior from the
original to the synthesized version. We therefore profile the
shared arrays which includes collecting (1) the number of
shared arrays, (2) the data type and size of each array, and
(3) the way the arrays are accessed. The latter is done by
maintaining the array’s base address and its index, which is
a function of the thread’s ID. By doing so, we reproduce the
same memory access patterns as long as the address is an
affine expression of the thread ID.

4.1.5 Memory Coalescing

GPUs provide a memory coalescing mechanism to improve
memory performance by merging global memory accesses
from different threads within a warp into a single mem-
ory transaction if contiguous memory addresses are ac-
cessed [2]. To clone the memory behavior, we glean the
global array information in a similar way as we do for
shared arrays. However, global arrays, in contrast to shared
arrays, come in different forms: (i) the global arrays can be
explicitly defined in the CUDA source code; or (ii) pointers
to global arrays get passed as parameters to CUDA kernel
functions, so-called parameter pointers, to copy data back
and forth between the CPU and GPU. We account for both
cases, and capture an array’s base address and its index. As
for shared array accesses, we reproduce the same memory
access patterns as long as the address is an affine expression
of the thread ID.

4.2 Code Generation

Having described how we collect a profile of a GPGPU
kernel in the previous section, we now detail on how we
generate a synthetic clone.

4.2.1 Loop Patterns

Our synthetic benchmark generation framework aims at
faithfully mimicking control flow, branch divergence and
memory access behavior. Moreover, as we will describe
in detail, we leverage control flow behavior, and loops in
particular, for controlling and reducing the simulation time
of synthetically generated kernels. We therefore describe
loop and control flow behavior in more detail now in the
current and next section.

We identified three typical loop patterns from a de-
tailed inspection of the DFSGs of the CUDA benchmarks
considered in this study. Figure 11 illustrates these three
typical loop patterns. (a) A self-loop consists of a single
basic block that jumps to itself. (b) A normal-loop consists
of multiple basic blocks in which a basic block jumps to

outside-

inside-

outside-
loop area

Backward jump
may depend on
threadID

(a) (b) (©)

Fig. 11: The three typical
loops in GPGPU kernels.

Fig. 12: Overview of
divergence flow modeling.

a dominator block through a backward jump. Figure 11(c)
illustrates the combination of (a) and (b): self-loops and
normal-loops may be nested to form more complex loop
structures. By analyzing all the experimented benchmarks,
we found all loops for all benchmarks to fall under at least
one of these three loop patterns (either directly or indi-
rectly /recursively). Note that different threads executing a
CUDA loop may iterate the loop for a different number of
times, which leads to branch divergence behavior. In this
case, the loop condition directly or indirectly depends on
the thread’s ID. This situation is quite common in CUDA
benchmarks based on our observation.

4.2.2 Divergence Behavior Modeling

To achieve similar performance between the synthetic clone
and the original GPGPU kernel, it is crucial to preserve
its divergence and control flow behavior. In addition, it is
also important that the synthesized kernel exhibits similar
basic block execution behavior to that of the original kernel.
GPGPU-MiniBench models these two aspects through the
DFSG as previously introduced. Figure 13 shows the DFSG
of the Kmeans (KM) benchmark as an example. We can easi-
ly derive how many threads execute a particular basic block
from the DFSG. For example, basic block #0 is executed
57,600 times by 57,600 threads of which 51,200 threads jump
to basic block #1 and the remaining 6,400 threads jump to
basic block #12. For the ease of reasoning, we partition the
control flow graph of a kernel into two parts, namely the
outside- and the inside-loop area as shown in Figure 12. We
define the basic blocks located outside any loop to be part
of the outside-loop area; all other basic blocks are located in
the inside-loop area. The modeling of the outside-loop area
is relatively easy whereas the modeling of the inside-loop
area is slightly more complicated.

In the discussion to follow, we define the global thread
ID as:

gTID = bNInG x tPB + tNInB )

with gT'ID the global thread ID, bNInG the index of the
given thread block within the grid, tPB the number of
threads per block, and tNInB the index of the given thread
in its block. We consider 3 dimensions (3D). The 2D and
1D case can be derived from the 3D case by setting the
corresponding value(s) to 0. The thread index within its
block equals:

tNInB = tid.x+tid.y X ntid.x+tid.z x ntid.x x ntid.y (2)
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Fig. 13: The DFSG of the Kmeans benchmark.

4.2.2.1 Outside-loop area

For branches in the outside-loop area, we simply assume
that the first N threads go in one direction, while the
remaining threads go the other way. (We find this simple
heuristic to work well for our workloads.) Knowing how
many threads jump in one or the other direction is easily
derived from the DFSG.

4.2.2.2 Inside-loop area

Modeling branches in the inside-loop area is a bit more
complicated. We describe the modeling of the inside-loop in
three cases: (1) self-loops, (2) jump point of a normal-loop,
and (3) target point of a normal-loop.

1) Self-loop

Based on our observation, most of the self-loops are thread-
independent, i.e., the number of iterations of a loop is
typically constant across threads. Hence we simply set the
number of iterations of a self-loop to the LCount as specified
in the DFSG.

2) Jump point of a normal-loop

We define the jump point of a normal-loop as the basic
block that jumps backwards. For example, in Figure 12,
basic block #6 is the jump point of a normal-loop, and basic
block #1 (OTO direction) is the backward target while basic
block #7 (OT1 direction) is the forward target. We make a
distinction between the following cases based on the jump
point’s statistics.

(i) The number of threads jumping backwards equals the
total number of incoming threads to the current basic block.

In other words, all threads jump backwards.

(ii) The number of threads jumping backwards is less
than the total number of incoming threads to the jump
point. We set the first N threads to jump back-wards. (Again,
we find this simple heuristic to work well for our set of
workloads.)

3) Target point of a normal-loop

We define the target point of a normal-loop as the direct
target of a backward jump (e.g., basic block #1 in Figure 12
is a target point). We consider four sub-cases.

(i) All threads take the same direction.

(ii) One group of threads goes to one direction and the
other group of threads goes to the other direction, but the
number of iterations of the two groups of threads is the
same.

(iii) A number of threads go to one direction, the rest
goes to the other direction, and the sum is greater than
the number of incoming threads to the jump point. This
indicates that the number of iterations varies across threads,
which we model as such.

(iv) The branch condition does not depend directly on
the thread ID but depends on a result calculated by the
thread itself (indirect thread ID dependence). This is the
same as the branches in traditional single-threaded pro-
grams. In this case, we use a uniform random number
generator to generate the branch condition at each iteration
(while making sure we obey the branch statistics, i.e., the
number of threads going in either direction is identical to
the original kernel).

4.2.3 Reducing Simulation Time

The existence of loops in CUDA threads provides us with
an opportunity to reduce simulation time while preserving
performance and behavior. The central idea to our approach
is to reduce the number of iteration counts by a given
factor, called the reduction factor. The basic intuition is that
reducing loop iteration count reduces simulation time of
a kernel while preserving execution behavior in terms of
the number of instructions executed per cycle (IPC). One
key question now is how to determine the reduction factor.
This is non-trivial given there are multiple loops in a kernel
that are often nested; hence the question is, should we
consider a single reduction factor across all loops, or should
we determine reduction factors on a per-loop basis? Also,
how should we determine the reduction factor?

The maximum possible reduction factor can be easily
derived from the DFSG as the maximum LCount in the
graph. The maximum simulation speedup is thus obtained
by setting the iteration count to one for all loops. While
we found this to be fairly accurate for most benchmarks
while yielding high simulation speedups, accuracy can be
improved significantly for some benchmarks by choosing
a lower reduction factor (at the cost of slower simulation
speed). We will evaluate the impact of the reduction factor on
accuracy and simulation speed in the evaluation section.

4.2.4 Code Generation Algorithm

We now describe the various steps to generate a synthetic
miniature kernel. Figure 14 shows the overview of our code
generation framework. We follow a top-down hierarchy:
kernel, basic block, and instruction. There are also auxiliary
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I 0—>1;0—>3
I 1—>2
I 2—>2;2—>3
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Create a kernel object r——— 56
Creating basic blocks | _ | O--ECount:17536
ittty by Sy O--SCount:17536
Set divergence rate_ _ — —————————| O--L.Count:0
LT T = 'i Out Edeges:(0,1)---OECount:17536 *** TCount:17536
__global__ void kernel ( ***); On Edeges :(0,3)---OECount:0 *** TCount:0
: On Edeges :(0,3)---OECount:0 *** TCount:0
main_function() I 0 : e
{ : MOV _OP
. CVT_OP
allocate host a.nd ('ieV1ce memery i | e IDOF global threadID
kernel <<<gridDim, blockDim>> | () Param space: 7
: N SETP OP: %p1
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_ I ———— | cascSETP OP:
__global__ void kernel ( --+) | I L
( I I case $32_TYPE:
. I | asm volatile(".reg .pred %p_20;"),
calculating global threadID ; Jl [ asm volatile("setp.gt.u64 %p_20, %rgl3, 512;");
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¢ opcode f ==-d | case BRA_OP:
create Instructions for basic bloc_ks_ S asm volatil e("@%p. 20 bra inst60;"); o
}
: case LD OP:
L asm volatile("ld.global.ul6.%r1 [ %rs20+0];"

Fig. 14: Overview of GPGPU synthetic workload generation.

codes generated between the different levels in the hierarchy
to set information such as kernel parameters and divergence
rate to control the execution of the synthesized kernel.

1)
2)

5)

Create a kernel object to represent a CUDA kernel.
Set the parameter information for the kernel, espe-
cially the parameter pointers, the data types and
the order of the parameter pointers. This is done
in order to clone the memory coalescing behavior
of the original kernel to the synthesized one, as
described in Section 4.1.

Create basic blocks based on a .dot file as shown in
box (D in Figure 14. The .dot file is obtained through
profiling, and captures the control flow graph of the
original kernel.

Set the divergence rate for each branch in the created
control flow graph. The settings are based on the
models described in Section 4.2.2 (box ). If the
branch is a loop branch, we set its loop count to
LCount/reduction factor.

Generate kernel prototype code. This uses the pa-
rameter information set by step 2.

Generate the main function code. In the main func-
tion body, generate code to allocate host and device
memory, copy data from host to device, call the
kernel, and copy the results back to the host.
Generate code to define global arrays, if any.
Generate kernel definition code. Use the following

10)
11)

12)

13)

steps to generate code inside the kernel body.
Generate code to define shared arrays, if any.
Generate code to calculate the global thread ID
using Formula (1).

Generate code to define loop control variables and
initialize them. This is based on step 4.

Fill opcode for basic blocks based on the opcode
profiling described in Section 4.1. The output of the
profiling is a file that contains the opcode chain. This
file is one of the inputs of our code generator. Box
@ in Figure 14 shows an example.

Emit instructions. The setp and bra instructions de-
termine the kernel’s control flow behavior. The setp
instruction sets branch conditions and bra executes
the jump. The conditions set by setp are based
on the models described in Section 4.2.2 and the
information set by step 4. When emitting Id or st
instructions, we need to check if these instructions
are used to access shared or global arrays. For this
step, we employ the distance information described
in Section 4.1 (‘shared memory bank conflicts” and
‘memory coalescing’). The distance information is
stored in the output file, see box ) of Figure 14.

As shown in the box @) of Figure 14, each instruction is
emitted with assembly code using asm statements embed-
ded in CUDA code [31]. The use of the volatile directive for
each asm statement prevents the compiler from modifying
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these machine instructions, i.e., the code emitted by the com-
piler is exactly what the framework generates. The instruc-
tions are targeted towards a specific Intermediate Language
(IL), PTX in our case. However, the code generator can be
easily modified to emit instructions for any IL of interest.
The generated code is compiled by the nvcc compiler [32]
from NVidia and the binary can run on execution-driven
GPGPU simulators and real GPGPU devices.

As an example, box @) of Figure 14 also shows a part
of the synthesized code. The sefp and bra instructions con-
trol the divergence flow of the synthesized kernel. In this
example, when the global thread ID is greater than 512, the
execution jumps to instr60 which is the first instruction of
the target basic block. Otherwise, the execution goes to the
next basic block. This dictates that the first 512 threads go
to the next basic block while the other threads jump to the
target basic block. The Id instruction in the box @) illustrates
how we control the memory coalescing ratio. %120 is a
register value related to the thread ID. If the element size
of the global arrays shown in box §) equals 4, register %r20
then equals the product of thread ID and 4. This makes
the global memory accesses by threads within a warp to
be coalesced.

Note that the proposed framework does not handle
cache effects explicitly. This may need to change in the
future as GPGPU kernels get optimized better for cache
performance. For our workloads, we did not observe kernel
performance to be highly sensitive to cache performance.

5 EXPERIMENTAL SETUP

As previously mentioned, we analyzed instruction, basic
block, and thread characteristics for 35 benchmarks from the
CUDA SDK [27], Parboil [33], and Rodinia [34] benchmark
suites. However, to reduce overall simulation time, we limit
ourselves to 23 benchmarks in total. 15 benchmarks were
randomly selected out of the top-25 long-running bench-
marks, see Figure 15. The other 8 benchmarks (MUM, PNS,
LU, MT, BFS, NW, SLA, and NE) are those that could not
be accelerated well through sampling in space, according to
Figure 2. Table 2 lists these 23 benchmarks along with their
thread count and number of instructions per thread.

We use the GPGPU-sim_v2.1.1b [5] to evaluate our ap-
proach. The simulator is configured to evaluate the four
GPU micro-architecture configurations with different num-
bers of streaming multiprocessors (Table 3).

6 EVALUATION

In this section, we first evaluate the efficacy of GPGPU-
MiniBench. Subsequently, we compare it with an approach
that sets the number of loop iterations to one in the source
codes of the CUDA workloads.

6.1 Evaluation of GPGPU-MiniBench

We consider the following factors in the evaluation of
GPGPU-MiniBench: (i) the impact of the reduction factor
on simulation speed and accuracy, (ii) achieved simulation
speedup, (iii) accuracy (or IPC error), and (iv) other metrics
such as shared memory bank conflicts, memory coalescing
and branch divergence behavior.

S5

log10(number of instructions)
O = N W ks U N 2 0 O

AUFVEBPAS DSOS NZ T

p§§544%§m505m§3§3m2

N =
benchmarks

Fig. 15: Total dynamic instruction count for our 35
benchmarks, from which we randomly select 15 out of the
top-25 long-running benchmarks(black bars); 8 more
benchmarks, for which sampling in space fails, are
included as well(gray bars).

benchmark Abr. # of threads | Insts/thread
MumerGPU (DNA) MUM 50,176 739
Petri-Net Simulation PNS 51,200 3,884
LU Decomposition LU 20,480 976
Matrix Transpose MT 4,194,304 48
Breadth First Search BFS 32,768 30
Needleman-Wunsch NW 40,000 831
Scan(Para-Prefix sum ) | SLA 1,310,720 181
Nearest Neighbor NE 60,032 101
Histogram 64 64H 17,536 1,310
Black-Scholes BS 61,440 3,189
Cellular Automation CL 512 24,083
3D Laplace Solver LPS 12,800 6,385
K means KM 57,600 2,119
LIBOR Monte Carlo LIB 4,096 122,068
3D stencil computation | ST3D 230,400 10,471
Magnetic Resonance

Imaging FHD MRIF 32,768 11,883
Scalar Product SP 32,768 795
Particle Filter PF 256 153,622
Matrix multiplication MM 256,000 950
Neural Network NN 113,568 1,026
Leukocyte Tracking LT 307,420 27,816
Levenshtein Distance LV 32,768 16,065
Store GPU STO 49,152 2,517

TABLE 2: The CUDA benchmarks used in this paper, the #
of instructions per thread and the total # of threads.

We define simulation speedup as follows:

simulation_timeoriginal

speedup = 3)

simulation_timesynthetic
with simulation_timeoriginas the time to simulate the orig-
inal benchmark on the GPGPU performance simulator, and
simulation_timesynihetic the time to simulate the synthe-
sized benchmark clone on the same simulator.

We define the relative error for a metric M as

Msyn - Mori

REN = [T

(4)

with My, and M,,; obtained by simulating the synthetic
and original benchmark, respectively.
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Configurations Confl | Conf2 | Conf3 | Conf4 —
# of SMs 8 28 56 110 18 —a—pNs
Warp size 32 " r r
SIMD Pipeline Width 8 s ——brs
# of Threads/SM 1024 14 W
# of CTAs/SM 8 13 .
# of Registers/SM 16384 | 16384 | 32768 | 32768 | - s = E—
Shared Memory/SM (KB) 16 (16 banks, 1 access/cycle/bank) % 10 / e e
Constant Cache Size/SM 8KB (2-way set assoc, 64 lines) g 9 / ps
Texture Cache Size/SM 64KB (2-way set assoc, 64 lines) ¢ 3 P ——KM
# of Memory Channels 8 8 8 8 = / o D
L1 Data Cache 128KB | 128KB | 256KB | 256KB 5 += - —%—MRIF
L2 Cache None 4 %[ =X -
Bandwidth Per Memory Module 8 (Bytes/Cycle) ; Tﬁm "
DRAM Request Queue Capacity 32 =" —s—N
Memory Controller FR-FCFS 0-—:‘-*-”-@-“-?-00-0-”-v-w-c-+t$
Branch Divergence Method Immediate Post Dominator S B s
Warp Schedule Policy Round Robin among read warps Reduction factor

TABLE 3: Four GPGPU architecture configurations. SM —
Streaming Multiprocessor.

speedup (log2)
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Fig. 16: The impact of reduction factor on speedup.

(i) Impact of reduction factor on simulation speed
and accuracy. As previously mentioned, GPGPU-MiniBench
reduces simulation time by decreasing loop iteration counts
using a reduction factor. In this section, we study how
this reduction factor affects GPGPU architecture simulation
speed and accuracy. The values of reduction factors are 2,
4, 8, etc., in powers of 2. The maximum reduction factor
of a benchmark depends on its maximum number of loop
iterations. In our approach, the maximum number of loop
iterations is divided by the reduction factor and the rounded
down value of this result is set as the loop iteration count
in the synthesized benchmark. If the rounded down val-
ue of the result is 1, then the maximum reduction factor
is obtained. Because loop iteration counts are workload-
specific, different benchmarks may have different maximum
reduction factors.

Figures 16 and 17 quantify speed and accuracy, respec-
tively, as a function of the reduction factor. Figure 16 shows
that a larger reduction factor results in more speedup for
all the benchmarks, while Figure 17 reveals that a larger
reduction factor incurs higher IPC error. Apart from two
benchmarks (SP and LV), the maximum IPC error is less
than 8.5%. This indicates that we can choose the maximum
reduction factor to achieve the largest possible simulation

Fig. 17: The impact of reduction factor on IPC error.
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Fig. 18: Achieved simulation speedup (log scale) through
GPGPU-MiniBench for our four architectures with varying
numbers of of Streaming Multiprocessors (SM).
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Fig. 19: The IPC error for the 56-SM configuration.

speedup while preserving good accuracy.

(ii) Simulation speed. Figure 18 shows simulation speedup
for our benchmarks when their maximum reduction factors
are employed. The maximum speedup is 589 x for the PF
benchmark. Looking at Table 2, the number of dynamic
instructions per thread for this benchmark is about 150K.
This result demonstrates that GPGPU-MiniBench is most
effective at reducing simulation time for benchmarks with
large per-thread instruction counts. On average, our ap-
proach can speed up GPGPU architecture simulation by a
factor 40x, 46x, 52x and 58x for the 8-SM, 28-SM, 56-
SM, and 110-SM configurations, respectively. The harmonic
mean speedup equals 49x.

Interestingly, we also obtain significant speedups for 5
of the 8 benchmarks for which sampling in space does not
work. Our approach does not accelerate the simulation for
MT, BF'S, and NE, as these benchmarks do not execute
any loops. Hence, both sampling in space and our approach
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Fig. 20: IPC for four architectures for the synthetic and
original workloads.

do not work well for these three benchmarks. How to speed
up the GPGPU acceleration for these benchmarks is subject
to future work.

(iii) IPC error. Figure 19 shows the relative IPC error of
the synthesized versus original benchmarks for the 56-SM
configuration. The absolute average error equals 4.5%. For
the 8 benchmarks for sampling in space failed to work,
we obtain an average error of 3.3%, and no error higher
than 6.2%, which indicates that our approach outperforms
sampling in space.

Note that we observe both positive and negative er-
rors — for some benchmarks, GPGPU-MiniBench yields
a performance overestimation, and for others it yields an
underestimation — this indicates there is no systematic bias
in the modeling framework. We analyzed the reasons for
the errors, and we found these errors are due to various
simplifying assumptions made in the framework. In partic-
ular, the number of loop iterations of a GPGPU kernel may
vary across threads, which our model does not capture as it
assumes that all threads iterate loops for the same number
of times. Furthermore, we make the assumption that we
preserve execution characteristics as we reduce the number
of loop iterations; note we do this on purpose to reduce
simulation time, yet it incurs some inaccuracy.

Figure 20 quantifies accuracy across four different GPU
architectures — this is to illustrate how accurate GPGPU-
MiniBench is to analyze relative performance differences
across the GPU design space. There are a couple of ob-
servations to be made here. First, this graph reconfirms
the accuracy reported in Figure 19 across different GPU
architectures, i.e., the synthetic performance results closely
match the ones for the original workload. Second, GPGPU-
MiniBench is able to accurately track relative performance
differences across architectures and workloads. For exam-
ple, the performance difference seems to be small between
the four GPU architectures for the CL, PF and NN bench-
marks. For some benchmarks, performance improves with
increasing number of SMs but stagnates beyond 56 SMs,
see for example LIB, SP and LV; for the other benchmarks,
performance continues to improve with an increasing num-
ber of SMs. GPGPU-MiniBench captures all of these trends
accurately.

(iv) Other metrics. We considered other metrics next to
IPC to evaluate the synthesis framework, namely shared
memory bank conflicts, memory coalescing behavior and
branch divergence rates. We find the synthetic clones to
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Fig. 21: IPC error obtained by reducing the number of loop
iterations to one in the source code.
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Fig. 22: The static control flow graphs of the benchmark
M M with 3 versions. (a) The original version;(b) the loop
reduction version;(c) the synthesized version.

accurately mimic these metrics compared to the original
workloads, in spite of the simplifying assumptions we make
in the framework.

6.2 Comparison against loop reduction

Since GPGPU-MiniBench reduces simulation time by reduc-
ing the number of loop iterations in the synthesized code
to one, one may think that setting the number of loop
iterations to one in CUDA source code directly might be
equally accurate while being much simpler to implement.
Unfortunately, loop reduction does not work well for most
CUDA benchmarks, as shown in Figure 21. The IPC error for
most benchmarks is very high, with an average IPC error as
high as 34.4%.

The reason is that the CUDA compiler changes the
control flow of a workload when we set the number of
loop iterations to one in the source code which leads to
non-representative code. GPGPU-MiniBench on the other
hand preserves control flow behavior of the synthesized
code compared to the original code. Figure 22 shows the
control flow graph of the benchmark MM as an example. As
can be seen, loop reduction significantly changes the static
control flow graph of MM, while GPGPU-MiniBench does
not.
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7 RELATED WORK

Micro-architecture simulation is a key tool for computer
architecture research and development. A lot of research
has been done towards accelerating CPU simulation, see for
example [17] [18] [19] [35]. Only recently has interest grown
regarding GPGPU architecture simulation, as exemplified
by GPGPU-Sim [5] [8], Ocelot [6] [21] and Barra [7]. These
simulators are critical to GPGPU architecture research, but
they are slow. To the best of our knowledge, we are the first
to attempt to accelerate GPGPU architecture simulation.

Recently, Huang et al. accelerate GPGPU architecture
simulation by sampling thread blocks [20] using TBPoint.
Sampling thread blocks is a good idea since CUDA encour-
ages programmers to write programs with little communica-
tion between thread blocks. Although TBPoint achieves high
accuracy while simulating 10% to 20% of the total execution
time of the kernel (simulation speedup of 5 to 10x), sam-
pling workloads with high control/memory divergence be-
havior remains challenging. GPGPU-Minibench also targets
these challenging workloads with a very different approach,
and achieves high accuracy and higher simulation speedups
(by 49x on average). Lee et al. tried to parallelize the
GPGPU architecture simulation [36]. However, the speedup
of their approach only achieves up to 4.15x.

Synthesizing workloads/traces for performance eval-
uation has been an active area of research. Several re-
cent studies report good accuracy and significant simu-
lation speedups using synthetically generated benchmark
clones over running full workloads on cycle-accurate sim-
ulators [13] [23] [37] [38] [24]. However, all of this prior
work focused on long-running CPU programs. For parallel
programs, especially GPGPU kernels, it is very difficult to
apply the CPU synthetic techniques, as argued in Section 2.
We carefully analyze the unique characteristics of GPGPU
kernels and propose GPGPU-MiniBench as an alternate
workload synthesis approach for accelerating GPGPU ar-
chitecture simulation.

8 CONCLUSION

Slow micro-architecture simulation speed has been a major
and constant concern for several decades in the CPU do-
main, and now with the emergence for GPGPU computing,
there is a strong need for simulation acceleration techniques
for GPGPU. In this paper, we have argued that existing CPU
simulation acceleration techniques do not readily apply to
GPGPU. We therefore proposed a very different approach
in this paper. GPGPU-MiniBench generates synthetic clones
of real GPGPU workloads that exhibit similar execution
characteristics (within 4.7% on average) as the original
workloads while being much shorter to simulate, yielding
a simulation speedup of a factor 49x on average. GPGPU-
MiniBench is accurate enough for making high-level design
decisions and trend analyses in GPGPU architectures and
systems.
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