Hierarchically Characterizing CUDA Program Behavior
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We show that the similarity matrix can be a very Table 1 Hardware Configuration [1] http://www.nvidia.com/
powerful tool for performance tuning. NUrber of Shader Cores 55 [2] NVIDIA CORPORATION. NVIDIA CUDA
Warp size ER Programming Guide, version 3.0.
SIMD Pipeline Width 8 [3] T. Sherwood, E Perelman, G. Hamerly, and B. Calder,
Nﬁ;”ﬁ;;:’;:g{:gféi‘:: 10824 “Automatically Characterizing Large Scale Program
Number of Registers/Core 16384 Behavior”, Proceedings of the 10th International
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_Ks,1- NW_k1,1-256
L1 Cache None -
L2 Cache None
Per Memory Module 8 (Bytes/Cycle) ° T
DRAM Request Queue Capacity 32 s :
Memory Controller Out of order (FR-FCFS) 4
Branch Divergence Method Immediate Post Dominator a N
Warp Schedule Polic) Round Robin among read warps 7
Table 2 Interconnect Configuration 0 n : il
Topoiog Mesh 3gsze9zEsudsiezsdy
Routing Mechanism Dimension Order The Insruction Mix of CUDA Benchmarks. ot iegends are: Avithmetic nstuction dependercy ditances of CUDA
Routing delay 1 1INT, 2-FP, 3-CS, 4LS, 5-DMC, 6-CF, 7-PSC, 8-MI
Virtual channels 2
Virtual channel buffers 4 INT ---- Integer arithmetic DMC - Data movement and conversion
Virtual channel allocator iSLIP /PIM P —— Floating point CF — Controlflow
Allocation iters 1 s PSC — pamlel o
Virtual channel allocation delay 1
e ahoee 1 5 Logiand st W Mscelancous
Flit size (Bytes) 16
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