
Over the last few years, the performance of 
Graphic Processing Unit (GPUs) has improved more 
rapidly than that of CPUs [1]. The key to harness the 
powerful computation power of GPGPUs is an easy 
and efficient programming model. To this end, 
NVIDIA created Compute Unified Device Architecture 
(CUDA) programming mode [2]. It is implemented by 
extending the standard ANSI C with keywords that 
designate data-parallel functions called kernels. 

CUDA  programming mode is very different from 
sequential programming modes. To characterize 
CUDA program behavior and understand why and 
where they can achieve significant speedup 
comparing to sequential programs, it is important to 
revisit the basic block level and instruction level 
properties besides those at the thread level. In this 
paper, we propose to characterize CUDA program 
behaviors hierarchically by quantitatively gleaning 
properties from thread, basic block, and instruction 
levels. 

In addition, previous researchers have 
demonstrated that basic blocks vectors (BBVs) are 
one of the most accurate techniques for creating 
code signatures [3] for sequential programs. In this 
paper, we firstly employ basic block and basic block 
vectors to analyze the code signature of CUDA 
threads. We observed that basic block characteristics 
of CUDA kernels are very different from those of 
sequential programs. Based on the basic block 
vectors, we construct the similarity matrix of threads. 
We show that the similarity matrix can be a very 
powerful tool for performance tuning. 
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Metrics
Number of instructions per thread
Thread performance
Number of basic blocks
Average basic block size
Program footprint
Instruction mix
Instruction-level parallelism

….
Similarity Matrix

Basic block vector per thread
Basic block vector per kernel
Synchronization vector
Similarity matrix based on basic block vectors

Benchmarks
CUDA SDK
Parboil
Rodinia
Other programs from recent papers

35 benchmarks  in total

Platforms
Based on GPGPUsim
.Extends cuda-sim to support 

Measure instruction dependency distance
Generate basic block vectors per thread and for the whole 

kernel
Generate synchronization vectors
Measure instruction mix
Measure the instruction count per thread

Extends gpu-sim to support
Measure the performance of each CUDA thread
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We present a hierarchical methodology to 
quantitatively characterize CUDA program behavior at 
thread, basic block and instruction level.  We summarize 
the main findings here. First, the IPC of CUDA thread is 
only about 1/40~1/100 of the average IPC of CPUs. 
Second, the average number of basic blocks of CUDA 
programs is 1/11~1/25 of that of sequential programs. 
Finally, the data movement and conversion instructions 
(mov, cvt) of CUDA programs hold a high percentage 
(37.8%). There are also a lot of other findings such as ILP 
of CUDA kernels in the paper. To our best knowledge, we 
are the first to do such characterization for CUDA 
programs. The outcome of our work can be used to 
optimize GPGPU architectures and CUDA compilers.

The CUDA programming model derives from the more 
general Single-Program Multiple-Data (SPMD) model 
which is widely available other parallel processing 
systems. Therefore, the proposed hierarchical 
characterization methodology, especially the basic block 
vectors and similarity matrix, can also be used to 
characterize other SPMD parallel programs.
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Number of Shader Cores 28 
Warp size 32 

SIMD Pipeline Width 8 
Number of Threads/Core 1024 
Number of CTAs/Core 8 

Number of Registers/Core 16384 
Shared Memory /Core (KB) 16(16 banks, 1 access/cycle/bank) 
Constant Cache Size / Core 8KB (2-way set assoc, 64 lines) 
Texture Cache Size / Core 64KB (2-way set assoc, 64 lines) 

Number of Memory Channels 8 
L1 Cache None 
L2 Cache None 

Bandwidth Per Memory Module 8 (Bytes/Cycle) 
DRAM Request Queue Capacity 32 

Memory Controller Out of order (FR-FCFS) 
Branch Divergence Method Immediate Post Dominator 
Warp Schedule Policy Round Robin among read warps 

Table 1 Hardware Configuration 

 
 

Topology Mesh 
Routing Mechanism Dimension Order 

Routing delay 1 
Virtual channels 2 

Virtual channel buffers 4 
Virtual channel allocator iSLIP / PIM 

Allocation iters 1 
Virtual channel allocation  delay 1 

Input speedup 2 
Flit size (Bytes) 16 

Table 2 Interconnect Configuration 

 
 
 
 

Benchmark Number of 
Basic Blocks 

NBB for 80%  NBB for 90% Average Basic 
B lock Size 

Average Num ber of 
Successor Basic Blocks 

64H-k2 11 5 8 5.67 1.45 
BFS 8 3 3 7.56 1.625 

BlackScholes 4 4 4 26.4 1.5 
BN 24 4 6 7.32 1.5 

BP-k1 10 4 6 9.63 1.5 
BS (*) 4 4 4 26.4 1.5 

CL 110 4 5 5.19 1.38 
CP 6 5 5 10.43 1.33 

CS-k1 7 4 5 33.75 1.29 
FWT-k2 13 10 12 10 1.69 

GS 7 4 5 12.25 1.43 
HS 26 9 14 9.19 1.65 

KM-k2 16 7 10 4.76 1.44 
LIB-k1 49 11 13 8.72 1.6 

LPS 30 12 14 7.61 1.57 
LT-k3 13 4 4 7.5 1.55 

LV 21 5 5 8 1.48 
MC 1 - - 10.5 1 
MM 6 4 5 18.57 1.5 

MRIF-k1 15 2 2 12 1.6 
MT-k1 5 4 5 9.5 1.4 

NE 21 12 14 5.68 1.33 
NN 6 4 5 15.14 1.33 

NQU 29 6 7 6.17 1.45 
NW-k1 17 8 10 15.83 1.41 

PF 16 4 4 8.53 1.44 
PNS 103 59 100 8.47 1.48 

PR-k1 10 7 8 7.36 1.4 
RAY 79 - - 10 1.46 

RP ES-k1 29 6 8 14.43 1.48 
SAD 19 - - 17.4 1.59 

SLA-k1 13 6 9 6.79 1.54 
SP 18 8 11 5.68 1.56 

SRAD-k1 32 15 17 9.42 1.41 
SS-k2 21 9 14 7.43 1.48 
ST3D 8 3 4 22.78 1.5 
STO 19 12 13 124.95 1.42 

TPACF 64 15 24 8 1.55 

Table 3  Basic Block Properties of CUDA Programs
NBB for x% means Number of B asic Blocks account for x% of program execution 

*: The BS is a modifie d version of BlackScholes 
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Arithmetic instruction dependency distances of CUDA 
benchmarks
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The Instruction Mix of CUDA Benchmarks. The legends are: 
1-INT, 2-FP, 3-CS, 4-LS, 5-DMC, 6-CF, 7-PSC, 8-MI

INT ---- Integer arithmetic

FP ---- Floating point

CS ---- Comparison and selection

LS ---- Logic and shift

DMC ---- Data movement and conversion

CF    ---- Control flow

PSC ---- Parallel Synchronization and Communication 

MI    ---- Miscellaneous

http://www.nvidia.com/
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