
Over the last few years, the performance of
Graphic Processing Unit (GPUs) has improved more
rapidly than that of CPUs [1]. The key to harness the
powerful computation power of GPGPUs is an easy
and efficient programming model. To this end,
NVIDIA created Compute Unified Device Architecture
(CUDA) programming mode [2]. It is implemented by
extending the standard ANSI C with keywords that
designate data-parallel functions called kernels.

CUDA programming mode is very different from
sequential programming modes. To characterize
CUDA program behavior and understand why and
where they can achieve significant speedup
comparing to sequential programs, it is important to
revisit the basic block level and instruction level
properties besides those at the thread level. In this
paper, we propose to characterize CUDA program
behaviors hierarchically by quantitatively gleaning
properties from thread, basic block, and instruction
levels.

In addition, previous researchers have
demonstrated that basic blocks vectors (BBVs) are
one of the most accurate techniques for creating
code signatures [3] for sequential programs. In this
paper, we firstly employ basic block and basic block
vectors to analyze the code signature of CUDA
threads. We observed that basic block characteristics
of CUDA kernels are very different from those of
sequential programs. Based on the basic block
vectors, we construct the similarity matrix of threads.
We show that the similarity matrix can be a very
powerful tool for performance tuning.

Methodology Conclusion

Hierarchically Characterizing CUDA Program Behavior

References

Metrics
Number of instructions per thread
Thread performance
Number of basic blocks
Average basic block size
Program footprint
Instruction mix
Instruction-level parallelism

….
Similarity Matrix

Basic block vector per thread
Basic block vector per kernel
Synchronization vector
Similarity matrix based on basic block vectors

Benchmarks
CUDA SDK
Parboil
Rodinia
Other programs from recent papers

35 benchmarks in total

Platforms
Based on GPGPUsim
.Extends cuda-sim to support

Measure instruction dependency distance
Generate basic block vectors per thread and for the whole

kernel
Generate synchronization vectors
Measure instruction mix
Measure the instruction count per thread

Extends gpu-sim to support
Measure the performance of each CUDA thread

[1] http://www.nvidia.com/
[2] NVIDIA CORPORATION. NVIDIA CUDA

Programming Guide, version 3.0.
[3] T. Sherwood, E Perelman, G. Hamerly, and B. Calder,

“Automatically Characterizing Large Scale Program
Behavior”, Proceedings of the 10th International
Conference on Architectural Support for Programming
Languages and Operating Systems, ACM Press,
October 5-9, 2002, San, Jose, CA, pp. 45-57

We present a hierarchical methodology to
quantitatively characterize CUDA program behavior at
thread, basic block and instruction level. We summarize
the main findings here. First, the IPC of CUDA thread is
only about 1/40~1/100 of the average IPC of CPUs.
Second, the average number of basic blocks of CUDA
programs is 1/11~1/25 of that of sequential programs.
Finally, the data movement and conversion instructions
(mov, cvt) of CUDA programs hold a high percentage
(37.8%). There are also a lot of other findings such as ILP
of CUDA kernels in the paper. To our best knowledge, we
are the first to do such characterization for CUDA
programs. The outcome of our work can be used to
optimize GPGPU architectures and CUDA compilers.

The CUDA programming model derives from the more
general Single-Program Multiple-Data (SPMD) model
which is widely available other parallel processing
systems. Therefore, the proposed hierarchical
characterization methodology, especially the basic block
vectors and similarity matrix, can also be used to
characterize other SPMD parallel programs.

Introduction Results

Acknowledgements
This work is supported by NSF China under Grant No. 60973036

Zhibin Yu, Hai Jin
Service Computing Technologies and System Lab/

Cluster and Grid Computing Lab,
Huazhong University of Science and Technology

Wuhan, China, 430074

Nilanjan Goswami, Tao Li
Intelligent Design of Efficient Architecture Lab,

University of Florida, Gainesville
Florida, USA

Lizy Kurian John
Laboratory for Computer Architecture,

Department of Electrical and Computer Engineering
University of Texas at Austin

Austin, TX78712 USA

Number of Shader Cores 28
Warp size 32

SIMD Pipeline Width 8
Number of Threads/Core 1024
Number of CTAs/Core 8

Number of Registers/Core 16384
Shared Memory /Core (KB) 16(16 banks, 1 access/cycle/bank)
Constant Cache Size / Core 8KB (2-way set assoc, 64 lines)
Texture Cache Size / Core 64KB (2-way set assoc, 64 lines)

Number of Memory Channels 8
L1 Cache None
L2 Cache None

Bandwidth Per Memory Module 8 (Bytes/Cycle)
DRAM Request Queue Capacity 32

Memory Controller Out of order (FR-FCFS)
Branch Divergence Method Immediate Post Dominator
Warp Schedule Policy Round Robin among read warps

Table 1 Hardware Configuration

Topology Mesh
Routing Mechanism Dimension Order

Routing delay 1
Virtual channels 2

Virtual channel buffers 4
Virtual channel allocator iSLIP / PIM

Allocation iters 1
Virtual channel allocation delay 1

Input speedup 2
Flit size (Bytes) 16

Table 2 Interconnect Configuration

Benchmark Number of
Basic Blocks

NBB for 80% NBB for 90% Average Basic
B lock Size

Average Num ber of
Successor Basic Blocks

64H-k2 11 5 8 5.67 1.45
BFS 8 3 3 7.56 1.625

BlackScholes 4 4 4 26.4 1.5
BN 24 4 6 7.32 1.5

BP-k1 10 4 6 9.63 1.5
BS (*) 4 4 4 26.4 1.5

CL 110 4 5 5.19 1.38
CP 6 5 5 10.43 1.33

CS-k1 7 4 5 33.75 1.29
FWT-k2 13 10 12 10 1.69

GS 7 4 5 12.25 1.43
HS 26 9 14 9.19 1.65

KM-k2 16 7 10 4.76 1.44
LIB-k1 49 11 13 8.72 1.6

LPS 30 12 14 7.61 1.57
LT-k3 13 4 4 7.5 1.55

LV 21 5 5 8 1.48
MC 1 - - 10.5 1
MM 6 4 5 18.57 1.5

MRIF-k1 15 2 2 12 1.6
MT-k1 5 4 5 9.5 1.4

NE 21 12 14 5.68 1.33
NN 6 4 5 15.14 1.33

NQU 29 6 7 6.17 1.45
NW-k1 17 8 10 15.83 1.41

PF 16 4 4 8.53 1.44
PNS 103 59 100 8.47 1.48

PR-k1 10 7 8 7.36 1.4
RAY 79 - - 10 1.46

RP ES-k1 29 6 8 14.43 1.48
SAD 19 - - 17.4 1.59

SLA-k1 13 6 9 6.79 1.54
SP 18 8 11 5.68 1.56

SRAD-k1 32 15 17 9.42 1.41
SS-k2 21 9 14 7.43 1.48
ST3D 8 3 4 22.78 1.5
STO 19 12 13 124.95 1.42

TPACF 64 15 24 8 1.55

Table 3 Basic Block Properties of CUDA Programs
NBB for x% means Number of B asic Blocks account for x% of program execution

*: The BS is a modifie d version of BlackScholes

10 20 30 40 50 60

10

20

30

40

50

60

64H_k2,1-64

5 10 15 20 25 30

5

10

15

20

25

30

BP_k1,1-32

200 400 600 800 1000

100

200

300

400

500

600

700

800

900

1000

LT_k3,1-1024
50 100 150 200 250

50

100

150

200

250

NW_k1,1-256

0

20

40

60

80

100

120

Ar
ith

m
et

ic
IL

P
Di

st
rib

ut
io

n(
%

)

64
H

B

FS

B
S

B

N

B
P

H

S

M
M

M

R
IF

M
T

N

E

N
Q

U

N
W

P

N
S

P

R

R
A

Y
S

LA

1
2
3
4
5
6
7
8
>8

Arithmetic instruction dependency distances of CUDA
benchmarks

0

50

100

150

In
st

ru
ct

io
n

M
ix

64
H

BF

S

BS

BN

H
S

M

C

M
M

M

R
IF

M

T

N
E

N

Q
U

N

W

PN
S

PR

R

AY

SL
A

SR

AD

TP
AC

F

2

4

6

8

The Instruction Mix of CUDA Benchmarks. The legends are:
1-INT, 2-FP, 3-CS, 4-LS, 5-DMC, 6-CF, 7-PSC, 8-MI

INT ---- Integer arithmetic

FP ---- Floating point

CS ---- Comparison and selection

LS ---- Logic and shift

DMC ---- Data movement and conversion

CF ---- Control flow

PSC ---- Parallel Synchronization and Communication

MI ---- Miscellaneous

http://www.nvidia.com/

	Slide Number 1

