
Accelerating GPGPU Architecture Simulation

Zhibin Yu*, Lieven Eeckhout+, Nilanjan Goswami#, Tao Li#, Lizy K. John^, Hai Jin&, Chengzhong Xu*%

* Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
+ ELIS Department, Ghent University, Belgium
Intelligent Design of Efficient Architectures Lab, University of Florida, Gainesville, FL, USA
^ Department of Electrical and Computer Engineering, University of Texas at Austin, TX, USA
& Service Computing Technologies and System Lab/Cluster and Grid Computing Lab, HUST, Wuhan,

China
 % Department of Electrical and Computer Engineering, Wayne State University, MI, USA

zb.yu@siat.ac.cn, leeckhou@elis.UGent.be, nil@ufl.edu, taoli@ece.ufl.edu,
ljohn@ece.utexas.edu, jinhust@gmail.com, czxu@wayne.edu

ABSTRACT
Recently, graphics processing units (GPUs) have opened up new
opportunities for speeding up general-purpose parallel
applications due to their massive computational power and up to
hundreds of thousands of threads enabled by data-parallel
programming models such as CUDA. However, due to the serial
nature of existing micro-architecture simulators, these massively
parallel architectures and workloads need to be simulated
sequentially. As a result, simulating GPGPU architectures with
typical benchmarks and input data sets is extremely time-consuming.

This paper addresses the GPGPU architecture simulation
challenge by generating miniature, yet representative GPGPU
kernels. We first summarize the static characteristics of an
existing GPGPU kernel in a profile, and analyze its dynamic
behavior using the novel concept of the divergence flow statistics
graph (DFSG). We subsequently use a GPGPU kernel
synthesizing framework to generate a miniature proxy of the
original kernel, which can reduce simulation time significantly.
The key idea is to reduce the number of simulated instructions by
decreasing per-thread loop iteration counts. Our experimental
results show that our approach can accelerate GPGPU architecture
simulation by a factor of 88× on average and up to 589× with an
average IPC relative error of 5.6%.

Categories and Subject Descriptors
B.8 [Hardware]: Performance and Reliability — Simulation; C.1
[Processor Architectures] Single-instruction-stream, multiple-
data-stream processors; C.4 [Computer Systems Organization]
Performance of Systems — Simulation

Keywords
General Purpose Graphics Processing Unit (GPGPU),
Performance, Micro-architecture Simulation

1. INTRODUCTION
In recent years, interest has grown substantially towards
harnessing the explosive growth in computational power of
graphics hardware to perform general-purpose tasks – referred to
as GPGPU computing. GPGPU computing achieves high

throughput by concurrently running massive numbers of threads
enabled by general-purpose GPU programming models such as
CUDA [1]. Unfortunately, existing GPGPU architecture
simulators are sequential – a mismatch with the massive number
of threads in the workloads and the number of parallel units in the
graphics hardware – which indicates that GPGPU architecture
simulation with typical benchmarks and input data sets is
extremely time-consuming.

Table 1 shows the execution time of several CUDA benchmarks
on a GPU device (NVIDIA GeForce 295) versus simulation time
on a GPGPU performance simulator (GPGPU-Sim [2]). These
measurements show that GPGPU performance simulation is
approximately 9 orders of magnitude slower compared to real
hardware. Given how computer architects heavily rely on simulators
for exploration purposes at various stages of the design, accelerating
GPGPU architectural simulation is imperative.

By characterizing existing GPGPU workloads, we find that
existing CPU and GPU architectural simulation acceleration
solutions cannot be readily applied to GPGPU simulation. First,
the number of basic blocks and the instruction count per thread of
GPGPU workloads are relatively small compared to typical CPU
workloads. This implies that the prerequisites of CPU
architectural simulation acceleration techniques such as sampling
[3][4] and statistical simulation [] do not apply. Second, the large
number of branch instructions in GPGPU workloads prohibits the
use of spreadsheet-based modeling techniques typically used for
pure-graphics workloads based GPU performance evaluation.

We therefore propose a synthetic GPGPU workload framework
that generates miniature proxies of workloads to address the
GPGPU architectural simulation challenge. Experimental results
show that our approach can speed up GPGPU architecture simulation
by a factor of 88× on average and up to 589×, with an average IPC
error of 5.6% across a broad set of GPGPU benchmarks.

2. WORKLOAD CHARACTERIZATION
To gain insight regarding how to accelerate GPGPU architectural
simulation, it is important to characterize existing GPGPU
workloads. We therefore developed a tool based on GPGPU-Sim
[2] to extract the features of GPGPU workloads at the instruction,
basic block, and thread levels. We obtain three key findings. (i)
The number of static basic blocks for most workloads ranges

Copyright is held by the author/owner(s)
SIGMETRICS’13, June 17–21, 2013, Pittsburgh, PA, USA.
ACM 978-1-4503-1900-3/13/06.

nil
Typewritten Text
This is author's own version. The authoritative version will appear in ACM SIGMETRICS 2013.

benchmark grid CTA GPU
time(ms)

Simulation
time (s)

RPES (65535,1,1) (64,1,1) 0.524 333641 >3.8 days
TPACF (201,1,1) (256,1,1) 0.054 1484125>17days

BLK (480,1,1) (128,1,1) 0.918 1038931>12 days
PNS (256,1,1) (256,1,1) 0.699 1019169>11 days

Table 1. Execution time comparison of CUDA programs on real
GPU device and GPGPU architectural simulator.

between 10 to 25, with an average of 23.4. This is relatively small
compared to CPU benchmarks such as SPEC CPU (265.5 on
average) and MediaBench (584.2 on average). (ii) The dynamic
instruction count per thread varies from dozens to tens of
thousands, which is extremely small compared to SPEC CPU and
PARSEC benchmarks. (iii) GPGPU workloads contain more
irregular code compared to pure graphics programs because of
higher percentages of branch instructions in GPGPU workloads.

The first two findings break the prerequisites of CPU architectural
simulation acceleration techniques such as sampling and
statistical simulation. Sampling techniques select snapshots from
a dynamic instruction stream, implying a large number of
instructions per thread. Due to the small instruction count per
thread for GPGPU workloads, sampling techniques cannot be
used. An alternative approach might be to sample a small number
of threads from the large number of threads in a typical GPGPU
workload to be simulated in detail but this is highly likely to alter
the inter-thread interactions. Statistical simulation generates a
synthetic workload with similar characteristics as the original
workload while dropping basic blocks that are seldom executed.
Likewise, this approach cannot be applied to GPGPU
architectural simulation because of the small number of basic
blocks in GPGPU workloads.

The third finding prohibits the use of spreadsheet-based modeling
techniques for pure GPU performance evaluation in the GPGPU
case. If the number of threads or input data sets of a GPGPU
workload is reduced, the simulation results such as IPC
(Instructions Per Cycle) is highly possible to be altered. Therefore,
the existing architectural simulation acceleration solutions for CPUs
and pure GPUs cannot be readily applied to GPGPUs.

3. GPGPU BENCHMARK SYNTHESIS
We propose GPGPU workload synthesis to accelerate GPGPU
architectural simulation. As shown in Figure 1, our approach
consists of three steps. In the first step, a profile is collected by
capturing the threads’ inherent execution characteristics by
executing the GPGPU workload with a given input. Subsequently,
the profile is used as input to a code generator to generate a
synthetic miniature GPGPU benchmark with similar execution
characteristics as the original workload, while being much shorter
running. In the final step, the synthetic benchmark is simulated on
an execution-driven architectural simulator such as GPGPU-Sim.

There are two key differences between our approach and
previously proposed CPU workload synthesis approaches. (i) We
use the control flow graph of the original workload as the code
skeleton for its synthetic version. (ii) We employ the same
number of threads and thread layout for the original and synthetic
version. Both of these features are important towards keeping
similar performance between the original and synthetic code
versions in terms of warp divergence, shared memory bank
conflict, and memory coalescing behavior. The key idea to reduce
simulation time then is to decrease the loop iteration counts. As a
result, the number of dynamically executed instructions is

Figure 1. GPGPU benchmark synthesis framework.

0

2

4

6

8

10

sp
ee

du
p(

lo
g2

)

64
H

B
S

C
L

LP
S

K
M

LI
B

S
T3

D

M
R
IF

S
P

P
F

M
M

N
N

LT

LV

S
TO

Figure 2. The speedup of 56-SM architecture simulation
reduced, and faster simulation times are achieved with the synthetic
clone, while yielding similar performance as the original workload.

4. EVALUATION
We employ 15 benchmarks to evaluate the efficacy of our
approach on the GPGPU-Sim simulator. The benchmarks are
taken from CUDA SDK, Rodinia, and Parboil, which are popular
GPGPU benchmark suites. The GPGPU simulator is configured
as a 56 SM (Streaming Multi-processor) GPGPU. Figure 2 shows
the speedup of our approach. The speedup achieves 88× on
average and up to 589×. The achieved speedups depend on the
benchmarks’ loop characteristics. For example, the iteration count
of PF is large and that of STO is very small. The accuracy of our
approach achieves 5.6% on average.

5. ACKNOWLEDGEMENTS
This work was supported by NSF China under grants 60973036 and
61272132.

6. REFERENCES
[1] NVIDIA CORPORATION, CUDA Programming Guide

Version 3.0, 2010.
[2] Bakhoda. A, Yuan. G. L, Fung. W. L, Wong. H, and

Aamodt. T. M. Analyzing CUDA Workloads Using a
Detailed GPU Simulator. In Proceedings of IEEE
International Symposium on Performance Analysis of
Systems and Software (ISPASS), pp. 163-174, April 2009.

[3] Wunderlich. R. E, Wenisch. T. F, Fasafi. B, and Hoe. J. C.
SMARTS: Accelerating Microarchitecture Simulation via
Rigorous Statistical Sampling. In Proceedings of the 30th
Annual International Symposium on Computer Architecture
(ISCA), pp. 84-95, June 2003.

[4] Sherwood. T, Perelman. E, Hamerly. G, and Calder. B.
Automatically Characterizing Large Scale Program Behavior.
In Proceedings of the 10th International Conference on
Architecture Support for Programming Languages and
Operating Systems (ASPLOS), pp. 45-57, Oct 2002.

[5] Eeckhout. L, Bell. R. H, Stougie. B, Bosschere. K. D, and
John. L. K. Control Flow Modeling in Statistical Simulation
for Accurate and Efficient Processor Design Studies. In
Proceedings of the 31st Annual International Symposium on
Computer Architecture (ISCA), pp.350-361.

	1. INTRODUCTION
	2. WORKLOAD CHARACTERIZATION
	3. GPGPU BENCHMARK SYNTHESIS
	4. EVALUATION
	5. ACKNOWLEDGEMENTS
	6. REFERENCES

