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ABSTRACT 
Recently, graphics processing units (GPUs) have opened up new 
opportunities for speeding up general-purpose parallel 
applications due to their massive computational power and up to 
hundreds of thousands of threads enabled by data-parallel 
programming models such as CUDA. However, due to the serial 
nature of existing micro-architecture simulators, these massively 
parallel architectures and workloads need to be simulated 
sequentially. As a result, simulating GPGPU architectures with 
typical benchmarks and input data sets is extremely time-consuming.  

This paper addresses the GPGPU architecture simulation 
challenge by generating miniature, yet representative GPGPU 
kernels. We first summarize the static characteristics of an 
existing GPGPU kernel in a profile, and analyze its dynamic 
behavior using the novel concept of the divergence flow statistics 
graph (DFSG). We subsequently use a GPGPU kernel 
synthesizing framework to generate a miniature proxy of the 
original kernel, which can reduce simulation time significantly. 
The key idea is to reduce the number of simulated instructions by 
decreasing per-thread loop iteration counts. Our experimental 
results show that our approach can accelerate GPGPU architecture 
simulation by a factor of 88× on average and up to 589× with an 
average IPC relative error of 5.6%. 

Categories and Subject Descriptors 
B.8 [Hardware]: Performance and Reliability — Simulation; C.1 
[Processor Architectures] Single-instruction-stream, multiple-
data-stream processors; C.4 [Computer Systems Organization] 
Performance of Systems — Simulation 

Keywords 
General Purpose Graphics Processing Unit (GPGPU), 
Performance, Micro-architecture Simulation 

1. INTRODUCTION 
In recent years, interest has grown substantially towards 
harnessing the explosive growth in computational power of 
graphics hardware to perform general-purpose tasks – referred to 
as GPGPU computing. GPGPU computing achieves high 

throughput by concurrently running massive numbers of threads 
enabled by general-purpose GPU programming models such as 
CUDA [1]. Unfortunately, existing GPGPU architecture 
simulators are sequential – a mismatch with the massive number 
of threads in the workloads and the number of parallel units in the 
graphics hardware – which indicates that GPGPU architecture 
simulation with typical benchmarks and input data sets is 
extremely time-consuming.  

Table 1 shows the execution time of several CUDA benchmarks 
on a GPU device (NVIDIA GeForce 295) versus simulation time 
on a GPGPU performance simulator (GPGPU-Sim [2]). These 
measurements show that GPGPU performance simulation is 
approximately 9 orders of magnitude slower compared to real 
hardware. Given how computer architects heavily rely on simulators 
for exploration purposes at various stages of the design, accelerating 
GPGPU architectural simulation is imperative. 

By characterizing existing GPGPU workloads, we find that 
existing CPU and GPU architectural simulation acceleration 
solutions cannot be readily applied to GPGPU simulation. First, 
the number of basic blocks and the instruction count per thread of 
GPGPU workloads are relatively small compared to typical CPU 
workloads. This implies that the prerequisites of CPU 
architectural simulation acceleration techniques such as sampling 
[3][4] and statistical simulation [] do not apply. Second, the large 
number of branch instructions in GPGPU workloads prohibits the 
use of spreadsheet-based modeling techniques typically used for 
pure-graphics workloads based GPU performance evaluation. 

We therefore propose a synthetic GPGPU workload framework 
that generates miniature proxies of workloads to address the 
GPGPU architectural simulation challenge. Experimental results 
show that our approach can speed up GPGPU architecture simulation 
by a factor of 88× on average and up to 589×, with an average IPC 
error of 5.6% across a broad set of GPGPU benchmarks. 

2. WORKLOAD CHARACTERIZATION 
To gain insight regarding how to accelerate GPGPU architectural 
simulation, it is important to characterize existing GPGPU 
workloads. We therefore developed a tool based on GPGPU-Sim 
[2] to extract the features of GPGPU workloads at the instruction, 
basic block, and thread levels. We obtain three key findings. (i) 
The number of static basic blocks for most workloads ranges 
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benchmark grid CTA GPU 
time(ms) 

Simulation 
time (s) 

RPES (65535,1,1) (64,1,1) 0.524 333641 >3.8 days 
TPACF (201,1,1) (256,1,1) 0.054 1484125>17days 

BLK (480,1,1) (128,1,1) 0.918 1038931>12 days 
PNS (256,1,1) (256,1,1) 0.699 1019169>11 days 

Table 1. Execution time comparison of CUDA programs on real 
GPU device and GPGPU architectural simulator. 

 
between 10 to 25, with an average of 23.4. This is relatively small 
compared to CPU benchmarks such as SPEC CPU (265.5 on 
average) and MediaBench (584.2 on average). (ii) The dynamic 
instruction count per thread varies from dozens to tens of 
thousands, which is extremely small compared to SPEC CPU and 
PARSEC benchmarks. (iii) GPGPU workloads contain more 
irregular code compared to pure graphics programs because of 
higher percentages of branch instructions in GPGPU workloads. 

The first two findings break the prerequisites of CPU architectural 
simulation acceleration techniques such as sampling and 
statistical simulation. Sampling techniques select snapshots from 
a dynamic instruction stream, implying a large number of 
instructions per thread. Due to the small instruction count per 
thread for GPGPU workloads, sampling techniques cannot be 
used. An alternative approach might be to sample a small number 
of threads from the large number of threads in a typical GPGPU 
workload to be simulated in detail but this is highly likely to alter 
the inter-thread interactions. Statistical simulation generates a 
synthetic workload with similar characteristics as the original 
workload while dropping basic blocks that are seldom executed. 
Likewise, this approach cannot be applied to GPGPU 
architectural simulation because of the small number of basic 
blocks in GPGPU workloads.  

The third finding prohibits the use of spreadsheet-based modeling 
techniques for pure GPU performance evaluation in the GPGPU 
case. If the number of threads or input data sets of a GPGPU 
workload is reduced, the simulation results such as IPC 
(Instructions Per Cycle) is highly possible to be altered. Therefore, 
the existing architectural simulation acceleration solutions for CPUs 
and pure GPUs cannot be readily applied to GPGPUs.  

3. GPGPU BENCHMARK SYNTHESIS 
We propose GPGPU workload synthesis to accelerate GPGPU 
architectural simulation. As shown in Figure 1, our approach 
consists of three steps. In the first step, a profile is collected by 
capturing the threads’ inherent execution characteristics by 
executing the GPGPU workload with a given input. Subsequently, 
the profile is used as input to a code generator to generate a 
synthetic miniature GPGPU benchmark with similar execution 
characteristics as the original workload, while being much shorter 
running. In the final step, the synthetic benchmark is simulated on 
an execution-driven architectural simulator such as GPGPU-Sim.  

There are two key differences between our approach and 
previously proposed CPU workload synthesis approaches. (i) We 
use the control flow graph of the original workload as the code 
skeleton for its synthetic version. (ii) We employ the same 
number of threads and thread layout for the original and synthetic 
version. Both of these features are important towards keeping 
similar performance between the original and synthetic code 
versions in terms of warp divergence, shared memory bank 
conflict, and memory coalescing behavior. The key idea to reduce 
simulation time then is to decrease the loop iteration counts. As a 
result, the number of dynamically executed instructions is 

Figure 1. GPGPU benchmark synthesis framework. 
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Figure 2. The speedup of 56-SM architecture simulation 
reduced, and faster simulation times are achieved with the synthetic 
clone, while yielding similar performance as the original workload.  

4.  EVALUATION 
We employ 15 benchmarks to evaluate the efficacy of our 
approach on the GPGPU-Sim simulator. The benchmarks are 
taken from CUDA SDK, Rodinia, and Parboil, which are popular 
GPGPU benchmark suites. The GPGPU simulator is configured 
as a 56 SM (Streaming Multi-processor) GPGPU. Figure 2 shows 
the speedup of our approach. The speedup achieves 88× on 
average and up to 589×. The achieved speedups depend on the 
benchmarks’ loop characteristics. For example, the iteration count 
of PF is large and that of STO is very small. The accuracy of our 
approach achieves 5.6% on average.    
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